羟基化多壁碳纳米管掺杂抑制锂硫电池的穿梭效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Inhibiting shuttle effect of lithium sulfur batteries by introducing hydroxylated multi-walled carbon nanotube
  • 作者:黄雅盼 ; 孙晓刚 ; 王杰 ; 李旭 ; 陈玮 ; 魏成成 ; 胡浩 ; 梁国东
  • 英文作者:HUANG Yapan;SUN Xiaogang;WANG Jie;LI Xu;CHEN Wei;WEI Chengcheng;HU Hao;LIANG Guodong;School of Mechatronics Engineering,Nanchang University;
  • 关键词:锂硫电池 ; 多壁碳纳米管 ; 羟基 ; 穿梭效应 ; 多硫化物
  • 英文关键词:lithium-sulfur batteries;;multi-walled carbon nanotubes;;hydroxyl;;shuttle effect;;polysulfide
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:南昌大学机电工程学院;
  • 出版日期:2018-08-31 09:09
  • 出版单位:复合材料学报
  • 年:2019
  • 期:v.36
  • 基金:江西省科技厅(20142BBE50071);; 江西省教育厅(KJLD13006)
  • 语种:中文;
  • 页:FUHE201905030
  • 页数:7
  • CN:05
  • ISSN:11-1801/TB
  • 分类号:279-285
摘要
为了抑制锂硫电池的"穿梭效应",改善锂硫电池的电化学性能。正极片掺杂羟基化多壁碳纳米管(MWCNTs—OH),利用亲水性羟基官能团对多硫化物的吸附作用,阻止多硫化物的扩散,增加有效物质的利用率,抑制穿梭效应的产生,提高锂硫电池的容量和循环性能。利用TEM、SEM和EDS等进行结构和性能表征。电化学测试结果表明,掺杂MWCNTs—OH的锂硫电池,放电容量明显提高。在0.1C倍率,首次放电比容量达到1 281mAh/g,首次库伦效率接近96.7%,循环10次后比容量还保持在882mAh/g。在0.2C、0.5C和1C倍率下充放电时,电池首次放电比容量分别达到794.2mAh/g、712.2mAh/g和557.3mAh/g,显示出极佳的倍率性。
        The present work aimed to restrain shuttle effect of lithium-sulfur(Li-S)batteries and improve the cycle performance.Hydroxylated multi-walled carbon nanotube(MWCNTs—OH)was used in the positive electrode to absorb polysulfides for cheking the shuttle effect.The diffusion of polysulphides was prevented from absorbing of hydroxyl groups to them.The utilization of active materials was enhanced.The capacity and cycle performance of lithium-sulfur batteries were greatly improved.The morphology and structure of electrodes were observed by TEM,SEM and EDS.The electrochemical test results show that the initial discharge specific capacity of Li-S batteries with the MWCNTs—OH reaches to 1 281 mAh/g and the coulomb efficiency reaches around 96.7%.The discharge capacity remains 882 mAh/g after 10 cycles.The batteries maintained a discharge specific capacity of 794.2 mAh/g,712.2 mAh/g and 557.3 mAh/g at the current rate of 0.2 C,0.5 Cand 1 Crespectively,showing excellent magnification.
引文
[1]MARMORSTEIN D,YU T H,STRIEBEL K A.Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes[J].Journal of Power Sources,2000,89(2):219-226.
    [2]PATIL A,PATIL V,DONG W S,et al.Issue and challenges facing rechargeable thin film lithium batteries[J].Materials Research Bulletin,2008,43(8):1913-1942.
    [3]BRUCE P G,FREUNBERGER S A,HARDWICH L J,et al.Li-O2and Li-S batteries with high energy storage[J].Nature Materials,2011,11(1):19-29.
    [4]胡宗倩,谢凯.锂硫电池硫正极材料研究现状与展望[J].材料导报,2011,25(9):46-50.HU Z Q,XIE K.Research progress of sulfur electrode of lithium/sulfur batteries[J].Materials Review,2011,25(9):46-50(in Chinese).
    [5]DIAO Y,XIE K,XIONG S,et al.Shuttle phenomenon:The irreversible oxidation mechanism of sulfur active material in Li-S battery[J].Journal of Power Sources,2013,235:181-186.
    [6]李宛飞,刘美男,王健,等.化学改性碳在锂硫电池中的研究进展[J].物理化学学报,2017,33(1):165-182.LI W F,LIU M N,WANG J,et al.Progress of lithium/sulfur batteries based on chemically modified carbon[J].Acta Physico-Chimica Sinica,2017,33(1):165-182(in Chinese).
    [7]YANG Y,ZHENG G,CUI Y.Nanostructured sulfur cathodes[J].Chemical Society Reviews,2013,42(7):3018-3032.
    [8]UMMETHALA R,FRITZSCHE M,JAUMANN T,et al.Lightweight,free-standing 3Dinterconnected carbon nanotube foam as a flexible sulfur host for high performance lithium-sulfur battery cathodes[J].Energy Storage Materials,2018,10:206-215.
    [9]CHENG X B,HUANG J Q,ZHANG Q,et al.Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries[J].Nano Energy,2014,4:65-72.
    [10]LI L,RUAN G,PENG Z,et al.Enhanced cycling stability of lithium sulfur batteries using sulfur-polyaniline-graphene nanoribbon composite cathodes[J].ACS Applied Materials&Interfaces,2014,6(17):15033-15039.
    [11]XIAO Z,YANG Z,WANG L,et al.A lightweight TiO2/graphene interlayer,applied as a highly effective polysulfide absorbent for fast,long-life lithium-sulfur batteries[J].Advanced Materials,2015,27(18):2891-2898.
    [12]ZHANG Z,LAI Y,ZHANG Z,et al.Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries[J].Electrochimica Acta,2014,129:55-61.
    [13]ZHANG S S,TRAN D T.Pyrite FeS2as an efficient adsorbent of lithium polysulphide for improved lithium-sulphur batteries[J].Journal of Materials Chemistry A,2016,4(12):4371-4374.
    [14]DATSYUK V,GUERRET-PIéCOURT C,DAGRéOU S,et al.Double walled carbon nanotube/polymer composites via in-situ nitroxide mediated polymerisation of amphiphilic block copolymers[J].Carbon,2005,43(4):873-876.
    [15]ZHAO M Q,ZHANG Q,HUANG J Q,et al.Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries[J].Nature Communications,2014,5:3410.
    [16]SALEM H A,BABUU G,RAO C V,et al.Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-Sbatteries[J].Journal of the American Chemical Society,2015,137(36):11542-11545.
    [17]ZU C,MANTHIRAM A.Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries[J].Advanced Energy Materials,2013,3(8):1008-1012.
    [18]ZHOU Z,XU Y,LIU W,et al.High capacity Si/DC/MWCNTs nanocomposite anode materials for lithium ion batteries[J].Journal of Alloys&Compounds,2010,493(1):636-639.
    [19]CLELAND W W.Dithiothreitol,a new protective reagent for SH groups[J].Biochemistry,1964,3(4):480-482.
    [20]LI Y,ZHAN H,LIU S,et al.Electrochemical properties of the soluble reduction products in rechargeable Li/S battery[J].Journal of Power Sources,2010,195(9):2945-2949.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700