改性碳纳纳米管/高密度聚乙烯复合材料正温度系数性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Positive Temperature Coefficient Properties of Modified Nanotubes/High-Density Polyethylene Composites
  • 作者:秦艳丽 ; 徐海萍 ; 代秀娟 ; 翟月 ; 杨丹丹 ; 王静荣
  • 英文作者:QIN Yanli;XU Haiping;DAI Xiujuan;ZHAI Yue;YANG DANDan;WANG Jingrong;School of Environmental and Materials Engineering, Shanghai Polytechnic University;Shanghai Innovation Institute for Materials;
  • 关键词:高密度聚乙烯 ; 碳纳米管 ; 正温度系数
  • 英文关键词:high-density polyethylene;;carbon nanotubes;;positive temperature coefficient
  • 中文刊名:SHDR
  • 英文刊名:Journal of Shanghai Polytechnic University
  • 机构:上海第二工业大学环境与材料工程学院;上海材料创新研究院;
  • 出版日期:2018-06-15
  • 出版单位:上海第二工业大学学报
  • 年:2018
  • 期:v.35;No.97
  • 基金:国家自然科学基金资助项目(51607109);; 上海市自然科学基金(16ZR1412400,15ZR1417100);; 上海市科委科普项目(16DZ2348700);; 上海第二工业大学重点学科(XXKYS1601);上海第二工业大学研究生项目基金(EGD16YJ045)资助
  • 语种:中文;
  • 页:SHDR201802006
  • 页数:6
  • CN:02
  • ISSN:31-1496/T
  • 分类号:35-40
摘要
以高密度聚乙烯(HDPE)为基体,改性的碳纳米管(CNTs)为导电填料,采用熔融法制备正温度系数(positive temperature coefficient,PTC)复合材料。通过扫描电子显微镜和热敏电阻曲线测试仪以及冲击试验机等,观察CNTs/HDPE复合材料的微观形貌,研究PTC效应随CNTs含量变化规律及对力学性能的影响。结果表明:CNTs在HDPE基体中分散性较好;当CNTS含量在体积分数为9%时,CNTs/HDPE复合材料的室温电阻率为102?·cm,PTC强度达4个数量级;HDPE基体中加入经过表面修饰过的CNTs后,复合材料的力学性能明显提高。当CNTs的体积含量在8%时,复合材料的冲击性能较纯HDPE提高了93%。
        Positive temperature coefficient(PTC) composites were prepared by melt-mixing method using high-density polyethylene(HDPE) and modified carbon nanotubes(CNTs) as the filler. The micro morphology of CNTs/HDPE composites were observed by scanning electron microscope, the effects of the PTC and the mechanical properties were investigated by thermistor curve tester and impact tester upon the content of CNTs. Results revealed that CNTs dispersed well in the HDPE matrix; When the volume fraction of CNTs was 9%, the room temperature resistivity of CNTs/HDPE was as low as 102?· cm and PTC intensity of 4 orders of magnitude;After adding surface-modified CNTs in the system, the mechanical properties of composites could obviously be improved. When the volume fraction of CNTs was 8%, the impact properties of composites were improved 93%, which were higher than pure HDPE.
引文
[1]万育萍,于阳,郭俭旭,等.低密度聚乙烯/炭黑/季戊四醇复合材料PTC特性的研究[J].塑料助剂,2017(1):41-44.
    [2]YANG D D,XU H P,YU W,et al.Solution-processed Ni–CNTs filled ferroelectric P(VDF–Tr FE)composites with improved dielectric properties and thermal conductivity[J].Journal of Materials Science Materials in Electronics,2018,29(1):63-69.
    [3]YANG D D,XU H P,YU W,et al.Dielectric properties and thermal conductivity of graphene nanoplatelet filled poly(vinylidene fluoride)(PVDF)/poly(methyl methacrylate)(PMMA)blend[J].Journal of Materials Science Materials in Electronics,2017,28(17):13006-13012.
    [4]谢成,徐海萍,史国银,等.改性钛酸钡及其聚合物复合材料介电性能研究[J].上海第二工业大学学报,2017,34(1):20-25.
    [5]钟志有,杨玲玲,周金,等.CB/PP复合材料的导电性能和PTC效应研究[J].中南民族大学学报(自然科学版),2010,29(2):31-34.
    [6]胡浩.高密度聚乙烯PTC复合材料的制备与研究[D].成都:成都理工大学,2013.
    [7]万育萍,钱江伟,廉果,等.LDPE/HDPE/炭黑PTC复合材料的制备与性能研究[J].塑料助剂,2016(5):24-27.
    [8]GAO Y J,LIU Z Y,YIN C L,et al.Preparing i PP/HDPE/CB functionally gradient materials:Influence factors of components and processing[J].Polymers for Advanced Technologies,2012,23(3):695-701.
    [9]尚淑英,马鹏飞,张玲,等.镍/硅橡胶复合材料阈值附近的压敏和介电行为研究[J].内蒙古科技大学学报,2016,35(4):384-387.
    [10]SHIMIZU K,NAKANO H,KONO A,et al.Electrical property of Ni composite based on HDPE and MMA having different MW[J].Ko bunshi Rombun Shu,2013,70(9):483-488.
    [11]徐芳林,张五一,黄灏,等.HDPE/石墨导热复合材料流变行为研究[J].塑料科技,2014,42(4):39-42.
    [12]李文春,沈烈,孙晋,等.多壁碳纳米管/聚乙烯复合材料的制备及其导电行为[J].应用化学,2006,23(1):64-68.
    [13]陈守刚,刘丹,王洪芬.改性碳纳米管/壳聚糖复合材料的制备及防污性能[J].化工学报,2015,66(11):4689-4695.
    [14]SENGUPTA R,BHATTACHARYA M,BANDYOPADHYAY S,et al.A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites[J].Progress in Polymer Science,2011,36(5):638-670.
    [15]GALPAYA D,WANG M,LIU M,et al.Recent advances in fabrication and characterization of graphene-polymer nanocomposites[J].Graphene,2012,1(2):30-49.
    [16]李旭,马麟,朱礼徳.超声振动超细粉碎系统的设计方法与实验研究[J].现代制造工程,2016(3):32-36.
    [17]许世娇,肖伯律,刘振宇,等.高能球磨法制备的碳纳米管增强铝基复合材料的微观组织和力学性能[J].金属学报,2012,48(7):882-888.
    [18]孟振强,刘如铁,熊拥军,等.球磨方式对多壁碳纳米管形貌和结构的影响[J].中国有色金属学报,2012,22(12):3421-3426.
    [19]孟胜皓,闫军,汪明球,等.碳纳米管表面改性及其应用于复合材料的研究现状[J].化工进展,2014,33(8):2084-2088.
    [20]郝爱平,陈玉琴,肖安国,等.碳纳米管的表面修饰及性能研究[J].湖南文理学院学报(自然科学版),2011,23(1):55-59.
    [21]王玉棉,孙建国,赵忠兴,等.不同络合剂对化学镀法制备镍包铜复合粉末的影响[J].兰州理工大学学报,2013,39(4):16-19.
    [22]王晓飞,蔡晓兰.碳纳米管化学镀的研究进展[J].粉末冶金工业,2010,20(6):41-45.
    [23]沈有斌,刘晓国.水性碳纳米管接枝改性环氧树脂的合成[J].化工进展,2012,31(4):857-860.
    [24]CIRILLO G,CARUSO T,HAMPEL S,et al.Novel carbon nanotube composites by grafting reaction with watercompatible redox initiator system[J].Colloid&Polymer Science,2013,291(3):699-708.
    [25]OKUTAN E,AYDIN G O,HACIVELIO?GLU F,et al.Preparation and properties of multi-walled carbon nanotube/poly(organophosphazene)composites[J].Journal of Materials Science,2013,48(1):201-212.
    [26]吕君亮,赵平.水性光固化碳纳米管改性聚氨酯乳液的研究[J].涂料工业,2013,43(1):1-3.
    [27]王龙飞,张俊伟,李光,等.不同纳米填料填充聚偏氟乙烯基复合材料的介电松弛行为[J].复合材料学报,2014,31(4):880-887.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700