利用速度成像技术研究碘乙烷多光子电离解离动力学
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multiphoton ionization dissociation dynamics of iodoethane studied with velocity map imaging technique
  • 作者:颜逸辉 ; 刘玉柱 ; 丁鹏飞 ; 尹文怡
  • 英文作者:Yan Yi-Hui;Liu Yu-Zhu;Ding Peng-Fei;Yin Wen-Yi;Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science and Technology;Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology;
  • 关键词:碘乙烷 ; 光解离 ; 离子速度成像 ; 飞行时间质谱
  • 英文关键词:iodoethane;;photodissociation;;velocity imaging;;time of flight mass spectrometry
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:南京信息工程大学江苏省大气海洋光电探测重点实验室;江苏省大气环境与装备技术协同创新中心;
  • 出版日期:2018-10-11 18:34
  • 出版单位:物理学报
  • 年:2018
  • 期:v.67
  • 基金:国家重点研发计划(批准号:2017YFC0212700);; 江苏省教育厅自然科学重大项目(批准号:18KJA140002);; 北京大学人工微结构和介观物理国家重点实验室开放课题资助的课题~~
  • 语种:中文;
  • 页:WLXB201820022
  • 页数:7
  • CN:20
  • ISSN:11-1958/O4
  • 分类号:328-334
摘要
卤代烷烃会破坏臭氧层,而碘乙烷(C_2H_5I)是卤代烷烃中重要代表物质之一.采用离子速度成像技术、飞秒激光技术和飞行时间质谱技术,探究了C_2H_5I的多光子电离解离动力学.通过分析C_2H_5I在强场作用下多光子电离解离得到的解离通道、碎片的动能、角度分布和各向异性参数等信息来研究碘乙烷离子(C_2H_5I~+)C-I键裂解机理.根据飞行时间质谱实验,C_2H_5I在飞秒激光脉冲作用下发生多光子电离解离得到的碎片有C_2H_5~+,I~+,CH_2I~+,C_2H_2~+,C_2H_3~+,C_2H_4~+等.与C-I键相关的碎片为C_2H_5~+和I~+,解离机制分别对应于C_2H_5I~+→C_2H_5~+I和C_2H_5I~+C_2H_5+I~+.同时,采用离子速度成像技术研究C_2H_5I~+的C-I键裂解产生的C_2H_5~+和I~+的速度影像,得出两者的速度分布和动能分布,分析结果表明C-I键裂解产生C_2H_5~+和I~+的过程都存在高能通道和低能通道.进一步分析解离碎片离子的角度分布发现C_2H_5~+解离时各向异性参数接近于0,可能对应于慢速的振动预解离过程.I~+在解离时各向异性参数较高,可能源于排斥势能面上的快速解离过程.最后采用密度泛函理论计算了C_2H_5I分子电离前后构型变化、离子态的能级强度及谐振强度,对C_2H_5I~+的解离机制做了更进一步的分析和讨论.
        Halogenated alkanes destroy the ozone layer, and iodoethane is one of the important representative halogenated alkanes. Time-of-flight mass spectrometry and velocity map imaging technique are used for investigating the photoionization dissociation dynamics of iodoethane, induced by 800 nm femtosecond laser. The dissociation mechanisms of iodoethane are obtained and discussed by analyzing the velocity distributions and angular distributions of the fragment ions generated in the dissociation. The measurements by time-of-flight mass spectrometry show that iodoethane cations generates C_2 H_5~+,I+, CH_2 I~+, C_2 H_2~+, C_2 H_3~+ and C_2 H_4~+. The fragments related to C-I bond fragmentation are C_2 H_5~+ions and I~+ ions, and the dissociation mechanisms are C_2 H_5 I~+ → C_2 H_5+I and C_2 H_5 I+→ C_2 H_5+I~+ respectively. Comparison between the configurations before and after ionization shows that the C—I bond length is 0.2220 nm before ionization and turns longer and becomes 0.2329 nm after ionization. This indicates that the C—I bond becomes more unstable after ionization and is more prone to dissociation. Moreover, the velocity map images of C_2 H_5~+ and I+ ions are acquired, from which the speed and angular distribution of C_2 H_5~+ and I+ are obtained. The analysis of speed distribution of the fragment ions shows that there are two channels, i.e. high energy channel and low energy channel in the dissociation process for producing C_2 H_5~+ and I+ ion. The difference between the ratios of the high energy channel and the low energy channel is small, indicating that the high energy channel and the low energy channel of the two dissociation processes are similar. According to the further analysis of the angular distribution of the fragment ions, it is found that the anisotropy parameter of C_2 H_5~+ is close to 0(isotropic), the production channel of which may correspond to the slow vibration predissociation process. The anisotropy parameters of I~+ ions are higher, which may be due to the rapid dissociation process on the repulsive potential energy surface. In addition, the density functional theory is used to calculate the configuration change of the iodoethane molecule before and after ionization, the energy level and oscillator strength for the ionic state in order to obtain more insights into the photodissociation dynamics.
引文
[1] Molina M J, Rowland F S 1974 Nature 249 810
    [2] Anderson J G, Toohey D W, Brune W H 1991 Science251 39
    [3] Foster K L, Plastridge R A, Bottenheim J W, Shepso P B, Finlayson-Pitts B J, Spicer C W 2001 Science 291471
    [4] Wu G, Jiang B, Ran Q, Zhang J, Harich S A, Yang X2004 J. Chem. Phys. 120 2193
    [5] Baklanov A V, Aldener M, Lindgren B, Sassenberg U2000 Chem. Phys. Lett. 325 399
    [6] Nijamudheen A, Datta A 2013 J. Phys. Chem. C 11741
    [7] Xu Y Q, Qiu X J, Abulimiti B, Wang Y M, Tang Y,Zhang B 2012 Chem. Phys. Lett. 554 53
    [8] Tang Y, Lee W B, Hu Z F, Zhang B, Lin K C 2007 J.Chem. Phys. 126 064302
    [9] Schuttig H, Grotemeyer J 2011 Eur. J. Mass. Spectrom.17 5
    [10] Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum.68 3477
    [11] Parker D H, Eppink A T J B 1997 J. Chem. Phys. 1072357
    [12] Liu Y Z, Gerber T, Knopp G 2014 Acta Phys. Sin. 63244208(in Chinese)[刘玉柱, Gerber T, Knopp G 2014物理学报63 244208]
    [13] Liu Y Z, Xiao S R, Zhang C Y, Zheng G G, Chen Y Y2012 Acta Phys. Sin. 61 193301(in Chinese)[刘玉柱,肖韶荣,张成义,郑改革,陈云云2012物理学报61 193301]
    [14] Frisch M J, Trucks G W, Schlegel H B, et al 2009 Gaussian 09 Revision E.01 Gaussian, Inc., Wallingford CT
    [15] Knoblauch N, Strobel A, Fischer I, Bondybey V E 1995J. Chem. Phys. 103 5417
    [16] Lossing F P, Semeluk G P 1970 Can. J. Chem. 48 955
    [17] de Leeuw D M, Mooyman R, de Lange C A 1978 Chem.Phys. Lett. 54 231
    [18] Dribinski V, Ossadtchi A, Mandelshtam V A, Reisler H2002 Rev. Sci. Instrum. 73 2634
    [19] Zare R N 1972 Mol. Photochem. 4 1
    [20] Goss S P, McGilvery D C, Morrison J D, Smith D L1981 J. Chem. Phys. 75 1820

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700