气态乙烷管道停输特性探讨
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Discussion on the Shutdown Characteristics of Vaporized Ethane Transportation Pipeline
  • 作者:陈俊文 ; 刘鑫 ; 汤晓勇 ; 谌贵宇 ; 郭艳林
  • 英文作者:Chen Junwen;Liu Xin;Tang Xiaoyong;Shen Guiyu;Guo Yanlin;China Petroleum Engineering & Construction Corp.Southwest Company;
  • 关键词:气态乙烷 ; 停输 ; 液化 ; 再启动
  • 英文关键词:Vaporized ethane;;Shutdown;;Liquification;;Restart
  • 中文刊名:TRYS
  • 英文刊名:Natural Gas and Oil
  • 机构:中国石油工程建设有限公司西南分公司;
  • 出版日期:2018-10-15
  • 出版单位:天然气与石油
  • 年:2018
  • 期:v.36
  • 基金:中国石油工程建设有限公司项目“乙烷管道输送及安全保障技术前期研究”(JCF-2018-10)
  • 语种:中文;
  • 页:TRYS201805002
  • 页数:7
  • CN:05
  • ISSN:51-1183/TE
  • 分类号:12-18
摘要
随着国内天然气处理厂轻烃回收工艺的发展,近年来的乙烯生产原料缺口有望得到弥补,乙烷输送管道亟待快速发展。鉴于乙烷产品的物理性质,气态和液态输送均具有相对可行性。其中,气态输送管道相比液态输送管道,操作压力较低,在中、短距离输送中具有一定优势。停输工况下,受环境影响,可能引起气态乙烷液化,其相变规律和特性对确定管道正常输送工况、管道管径、停输再启动方案具有一定影响,有必要进行深入认识与探讨。研究表明,系统压力对气态乙烷管道的管径选择影响较大;停输过程中系统的最低压力出现在对应环境温度的露点处。基于乙烷产品的物理特性,结合气态输送技术要求,阐述了系统压力对管道设计的影响,定性讨论了气态乙烷管道冬季停输的液化条件,并借助软件进行了相关模拟。露点压力附近,保持系统压力稳定是避免再启动过程中管道过度低温的关键。研究成果可为气态乙烷管道的设计提供相关借鉴。
        With the development of the light hydrocarbon recovery process in domestic natural gas processing plants,the shortage of raw materials for ethylene production in recent years is expected to be compensated domestically,and the ethane transportation pipeline needs rapid development. Given the physical properties of ethane products,both gaseous and liquid transportation have relative feasibility.Among them,compared to the liquid delivery,the gaseous transportation pipeline has a lower operating pressure and has certain advantages in medium and short distance transportation. Under shutdown conditions,due to the influence of the environment,the liquification of gaseous ethane may be caused. The phase change law and characteristics of the liquification have certain influence on the determination of the normal transmission conditions of the pipeline,the pipeline diameter,and the plan for restarting the shutdown transmission. It is necessary to make in-depth understanding and exploration. The study shows that the system pressure has a great influence on the pipe diameter selection of gaseous ethane pipelines;the lowest pressure of the system during the shutdown process occurs near the dew point pressure corresponding to the ambient temperature. Based on the physical characteristics of ethane,combined with the requirements of the gaseous transportation technology,the influence of system pressure on the pipeline design was elaborated,and the liquefaction conditions for stopping the transmission of gaseous ethane pipelines in winter were qualitatively discussed, and simulations were performed with software.Maintaining the stability of system pressure is the key to avoid excessive low temperatures in the pipeline during the restart process. The research results can provide reference for the design of gaseous ethane pipelines.
引文
[1]郭揆常.天然气凝液的综合利用[J].天然气工业,2003,23(1):98-103.Guo Kuichang. Comprehensive Utilization of the Condensed Liquid Recovered from Natural Gas[J]. Natural Gas Industry,2003,23(1):98-103.
    [2]胡文杰,朱琳.“膨胀机+重接触塔”天然气凝液回收工艺的优化[J].天然气工业,2012,32(4):96-100.Hu Wenjie,Zhu Lin. Optimization of the Recovery Process of Gas Condensate with DHX Tower Technology and Expander System[J]. Natural Gas Industry,2012,32(4):96-100.
    [3]王遇冬,王璐.我国天然气凝液回收工艺的近况与探讨[J].石油与天然气化工,2005,34(1):11-13.Wang Yudong,Wang Lu. Recent Status and Its Discussion of the NGL Recovery Process at Home[J]. Chemical Engineering of Oil and Gas,2005,34(1):11-13.
    [4]蒋洪,何愈歆,杨波,等.天然气凝液回收工艺RSV流程的模拟与分析[J].天然气化工(C1化学与化工),2012,37(2):65-68.Jiang Hong, He Yuxin, Yang Bo, et al. Simulation and Analysis on RSV Process for Ethane Recovery from Natural Gas Containing CO2[J]. Natural Gas Chemical Industry,2012,37(2):65-68.
    [5]冯若飞,李学新,焦光伟,等.液化天然气长输管道输送技术[J].天然气与石油,2012,30(2):8-10.Feng Ruofei,Li Xuexin,Jiao Guangwei,et al. Technology for Long-distance Liquefied Natural Gas Pipeline Transportation[J]. Natural Gas and Oil,2012,30(2):8-10.
    [6]何显荣,张引弟,杨建平,等.不同倾角下成品油顺序输送混油数值模拟[J].天然气与石油,2016,34(6):16-21.He Xianrong,Zhang Yindi,Yang Jianping,et al. Numerical Simulation of Product Oil Sequential Transportation Under Different Inclination Angle[J]. Natural Gas and Oil,2016,34(6):16-21.
    [7]曲晶瑀,闫肃,张可心.温度对冷热原油交替输送影响的数值模拟[J].天然气与石油,2016,34(4):12-16.Qu Jingyu,Yan Su,Zhang Kexin. Numerical Simulation of the Impact of Temperature on Batch Transportation of Cold and Hot Crude Oils[J]. Natural Gas and Oil,2016,34(4):12-16.
    [8]陈俊文,赵伏锐,胡连锋,等.液化石油气管道极端压力工况探讨[J].当代化工,2016,45(11):2605-2608.Chen Junwen,Zhao Furui,Hu Lianfeng,et al. Discussion on the Extreme Pressure of LPG Transportation Pipeline[J].Contemporary Chemical Industry,2016,45(11):2605-2608.
    [9]丁俊刚,张磊,刘佳,等.兰郑长成品油管道郑州站混油量研究[J].天然气与石油,2014,32(2):10-12.Ding Jungang, Zhang Lei, Liu Jia, et al. Study on Oil Mixture Volume at Zhengzhou Station in Lan-Zheng-Chang Product Oil Pipeline[J]. Natural Gas and Oil,2014,32(2):10-12.
    [10]王勇,王文武,呼延念超,等.油田伴生气乙烷回收HYSYS计算模型研究[J].石油与天然气化工,2011,40(3):236-239.Wang Yong, Wang Wenwu, Huyan Nianchao, et al.Research on HYSYS Computation Model for Improving Ethane Recovery from Oilfield Associated Gas[J]. Chemical Engineering of Oil&Gas,2011,40(3):236-239.
    [11]李振宇,胡徐腾,黄格省,等.进口LNG中乙烷资源与冷能利用途径分析及建议[J].石油与天然气化工,2013,42(2):143-148.Li Zhenyu,Hu Xuteng,Huang Gesheng,et al. Analysis and Suggestions on Utilization Pathway of Ethane and Cold Energy in Imported LNG[J]. Chemical Engineering of Oil&Gas,2013,42(2):143-148.
    [12]黄思宇,蒋洪,巴玺立,等.英买天然气处理装置提高丙烷收率工艺改进研究[J].石油与天然气化工,2015,44(4):1-7.Huang Siyu, Jiang Hong, Ba Xili, et al. Process Improvement Research on Enhancing Propane Recovery in Yingmai Natural Gas Processing Device[J]. Chemical Engineering of Oil&Gas,2015,44(4):1-7.
    [13]李怀印.海外油田液化气回收技术[J].石油与天然气化工,2010,39(3):200-203.Li Huaiyin. LPG Recovery Techniques in Overseas Oilfield[J]. Chemical Engineering of Oil&Gas,2010,39(3):200-203.
    [14]乔在朋,蒋洪,牛瑞,等.油田伴生气凝液回收工艺改进研究[J].石油与天然气化工,2015,44(4):44-49.Qiao Zaipeng, Jiang Hong, Niu Rui, et al. Study on Condensate Recovery Scheme Improvement of Oilfield Associated Gas[J]. Chemical Engineering of Oil&Gas,2015,44(4):44-49.
    [15]王立满,何利民,王玉柱,等.天然气凝析液管道射流清管模拟[J].管道技术与设备,2015,(2):60-63.Wang Liman,He Limin,Wang Yuzhu,et al. Simulation of By-pass Pigging in the NGL Pipeline[J]. Pipeline Technique and Equipment,2015,(2):60-63.
    [16]阮超宇,史博会,宋尚飞,等.天然气凝析液管道水合物堵管风险研究[J].石油科学通报,2016,1(2):257-269.Ruan Chaoyu,Shi Bohui,Song Shangfei,et al. Study of Hydrate Plugging Risk in Gas-condensate Pipelines[J].Petroleum Science Bulletin,2016,1(2):257-269.
    [17]李少林,王磊,贺江,等.美国天然气凝析液行业现状与展望[J].国际石油经济,2015,23(3):30-40.Li Shaolin,Wang Lei,He Jiang,et al. Status and Prospects of the Natural Gas Liquids Industry in the U. S.[J].International Petroleum Economics,2015,23(3):30-40.
    [18]王智,宫敬,尹铁男,等.天然气凝析液长距离管道稳态水力热力计算[J].东北石油大学学报,2013,37(4):60-66.Wang Zhi, Gong Jing, Yin Tienan, et al. Steady-state Hydraulic Thermodynamic Calculation Algorithm in Long Gas-condensate Pipeline[J]. Journal of Northeast Petroleum University,2013,37(4):60-66.
    [19]陈俊文,郭艳林,鲁国文,等.液态乙烷管道相变工况低温特性探讨[J].天然气与石油,2017,35(5):45-50.Chen Junwen,Guo Yanlin,Lu Guowen,et al. The Study of Low Temperature Characteristic of Liquid Ethane Pipeline Under Phase Change Condition[J]. Natural Gas and Oil,2017,35(5):45-50.
    [20]李欣泽. TLNET和SPS在输油管道仿真中的应用[J].管道技术与设备,2014,(1):12-14.Li Xinze. Application on TLNET and SPS in Oil Pipeline Simulation[J]. Pipeline Technique and Equipment,2014,(1):12-14.
    [21]王国,王春升,张明,等.基于OLGA瞬态模拟的凝析气管道积液影响因素分析[J].油气田地面工程,2017,35(4):14-17.Wang Guodong, Wang Chunsheng, Zhang Ming, et al.Influencing Factor Analysis of Condensate Gas Pipeline Liquid Loading Based on OLGA Transient Simulation[J].Oil-Gas Field Surface Engineering,2017,35(4):14-17.
    [22]郭芮,张伟明,姜俊泽,等.基于OLGA的机动管线气顶排空过程数值模拟[J].高校化学工程学报,2017,31(2):337-345.Guo Rui,Zhang Weiming,Jiang Junze,et al. Numerical Simulation of Mobile Pipeline Gas-Gap Emptying Based on OLGA[J]. Journal of Chemical Engineering of Chinese Universities,2017,31(2):337-345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700