Co-variation of the surface wind speed and the sea surface temperature over mesoscale eddies in the Gulf Stream region:momentum vertical mixing aspect
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Co-variation of the surface wind speed and the sea surface temperature over mesoscale eddies in the Gulf Stream region:momentum vertical mixing aspect
  • 作者:HE ; Jingjing ; LIN ; Xiaopei
  • 英文作者:HE Jingjing;LIN Xiaopei;Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology;
  • 英文关键词:Gulf Stream;;positive sea surface temperature(SST)-surface wind speed correlation;;marine atmospheric boundary layer(MABL) height;;mesoscale eddy;;momentum vertical mixing
  • 中文刊名:HYFW
  • 英文刊名:海洋湖沼学报(英文)
  • 机构:Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology;
  • 出版日期:2019-07-15
  • 出版单位:Journal of Oceanology and Limnology
  • 年:2019
  • 期:v.37
  • 基金:Supported by the China's National Key Research and Development Projects(No.2016YFA0601803);; the National Natural Science Foundation of China(Nos.41490641,41521091,U1606402);; the Qingdao National Laboratory for Marine Science and Technology(No.2017ASKJ01)
  • 语种:英文;
  • 页:HYFW201904002
  • 页数:11
  • CN:04
  • ISSN:37-1518/P
  • 分类号:20-30
摘要
The co-variation of surface wind speed and sea surface temperature(SST)over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data.Results show that the pattern of positive SST-surface wind speed correlations is anchored by strong SST gradient and marine atmospheric boundary layer(MABL)height front,with active warm and cold-ocean eddies around.The MABL has an obvious transitional structure along the strong SST front,with greater(lesser)heights over the north(south)side.The significant positive SST-surface wind-speed perturbation correlations are mostly found over both strong warm and cold eddies.The surface wind speed increases(decreases)about 0.32(0.41)m/s and the MABL elevates(drops)approximate 55(54)m per 1℃ of SST perturbation induced by warm(cold)eddies.The response of the surface wind speed to SST perturbations over the mesoscale eddies is mainly attributed to the momentum vertical mixing in the MABL,which is confirmed by the linear relationships between the downwind(cro sswind)SST gradient and wind divergence(curl).
        The co-variation of surface wind speed and sea surface temperature(SST)over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data.Results show that the pattern of positive SST-surface wind speed correlations is anchored by strong SST gradient and marine atmospheric boundary layer(MABL)height front,with active warm and cold-ocean eddies around.The MABL has an obvious transitional structure along the strong SST front,with greater(lesser)heights over the north(south)side.The significant positive SST-surface wind-speed perturbation correlations are mostly found over both strong warm and cold eddies.The surface wind speed increases(decreases)about 0.32(0.41)m/s and the MABL elevates(drops)approximate 55(54)m per 1℃ of SST perturbation induced by warm(cold)eddies.The response of the surface wind speed to SST perturbations over the mesoscale eddies is mainly attributed to the momentum vertical mixing in the MABL,which is confirmed by the linear relationships between the downwind(cro sswind)SST gradient and wind divergence(curl).
引文
Alexander M A,Blade I,Newman M,Lanzante J R,Lau N,Scott J D.2002.The atmospheric bridge:the influence of ENSO teleconnections on air-sea interaction over the global oceans.Journal of Climate,15(16):2 205-2 23 1.
    Bryan F O,Tomas R,Dennis J M,Chelton D B,Loeb N G,McClean J L.2010.Frontal scale air-sea interaction in high-resolution coupled climate models.Journal of Climate,23(23):6 277-6 291,https://doi.org/10.1175/2010JCLI3665.1.
    Chelton D B,Schlax M G,Freilich M H,Milliff R F.2004.Satellite measurements reveal persistent small-scale features in ocean winds.Science,303(5660):978-983.
    Chelton D B,Schlax M G,Samelson R M.2011.Global observations of nonlinear mesoscale eddies.Progress in Oceanography,91(2):167-216,https://doi.org/10.101 6/j.pocean.2011.01.002.
    Chelton D B,Xie S P.2010.Coupled ocean-atmosphere interaction at oceanic mesoscales.Oceanography,23(4):52-69.
    Chen L J,Jia Y L,Liu Q Y.2017.Oceanic eddy-driven atmo spheric secondary circulation in the winter Kuro shio Extension region.Journal of Oceanography,73(3):295-307,https://doi.org/10.1007/s10872-016-0403-z.
    Dee D P,Uppala S M,Simmons A J,Berrisford P,Poli P,Kobayashi S,Andrae U,Balmaseda M A,Balsamo G,Bauer P,Bechtold P,Beljaars A C M,Van De Berg L,Bidlot J,Bormann N,Delsol C,Dragani R,Fuentes M,Geer A J,Haimberger L,Healy S B,Hersbach H,Hólm E V,Isaksen L,Kallberg P,Kohler M,Matricardi M,McNally A P,Monge-Sanz B M,Morcrette J J,Park B K,Peubey C,De Rosnay P,Tavolato C,Thepaut J-N,Vitart F.2011.The ERA-Interim reanalysis:configuration and performance of the data assimilation system.Quarterly Journal of the Royal Meteorological Society,137(656):55 3-5 97,https://doi.org/10.1002/qj.828.
    Kouketsu S,Tomita H,Oka E,Ho soda S,Kobayashi T,Sato K.2011.The role of meso-scale eddies in mixed layer deepening and mode water formation in the western North Pacific.Journal of Oceanography,68(1):63-77,https://doi.org/10.100 7/s10872-011-004 9-9.
    Lambaerts J,Lapeyre G,Plougonven R,Klein P.2013.Atmospheric response to sea surface temperature mesoscale structures.Journal of Geophysical Research.Atmospheres,118(17):9 611-9 621,https://doi.org/10.1002/jgrd.50769.
    Lindzen R S,Nigam S.1987.On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics.Journal of the Atmospheric Sciences,45(17):2 418-2 436,https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.
    Liu J W,Xie S P,Norris J R,Zhang S P.2014.Low-level cloud re sponse to the gulf stream front in winter using CALIPSO.Journal of Climate,27(12):4 421-4 432,https://doi.org/10.1175/JCLI-D-13-00469.1.
    Ma J,Xu H M,Dong C M,Lin P F,Liu Y.2015.Atmospheric responses to oceanic eddies in the Kuroshio Extension region.Journal of Geophysical Research.Atmospheres,120(13):6 313-6 330,https://doi.org/10.1002/2014JD022930.
    Ma J,Xu H M,Dong C M.2016.Seasonal variations in atmospheric responses to oceanic eddies in the Kuroshio extension.Tellus A:Dynamic Meteorology and Oceanography,68(1):31 563,https://doi.org.10.3402/tellusa.v68.31563.
    Minobe S,Kuwano-Yoshida A,Komori N,Xie S P,Small R J.2008.Influence of the Gulf Stream on the troposphere.Nature,452(7184):206-209,https://doi.org/10.1038/nature06690.
    Minobe S,Miyashita M,Kuwano-Yo shida A,Tokinaga H,Xie S P.2010.Atmospheric response to the gulf stream:seasonal variations.Journal of Climate,23(13):3 699-3 719.
    Norris J R.1998.Low cloud type over the ocean from surface observations.Part I:Relationship to surface meteorology and the vertical distribution of temperature and moisture.Journal of Climate,11(3):369-382,https://doi.org/10.1175/1520-0442(1998)011<0369:LCTOTO>2.0.CO;2.
    Okumura Y,Xie S P,Numaguti A,Tanimoto Y.2001.Tropical Atlantic air-sea interaction and its influence on the NAO.Geophysical Research Letters.28(8),1 507-1 5 1 0,https://doi.org/10.1029/2000GL012565.
    O'Neill L W,Esbensen S K,Thum N,Samelson R M.2010.Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations.Journal of Climate,23(3):559-581.
    Park K A,Comillon P C,Codiga D L.2006.Modification of surface winds near ocean fronts:Effects of Gulf Stream rings on scatterometer(QuikSCAT,NSCAT)wind observations.Journal of Geophysical Research:Oceans,111(C3):C03021,https://doi.org/10.1029/2005JC003016.
    Small R J,deSzoeke S P,Xie S P,O'Neill L,Seo H,Song Q,Cornillon P,Spall M,Minobe S.2008.Air-sea interaction over ocean fronts and eddies.Dynamics of Atmospheresand Oceans,45(3):274-319,https://doi.org/10.1016/j.dynatmoce.2008.01.001.
    Small R J,Xie S P,Wang Y Q.2003.Numerical simulation of atmo spheric response to pacific tropical instability waves.Journal of Climate,16(22):3 723-3 741,https://doi.org/10.1175/1520-0442(2003)016<3723:NSOART>2.0.CO;2.
    Suarez M J,Arakawa A,Randall D A.1983.The parameterization of the planetary boundary layer in the UCLA general circ ulation model:formulation and res ults.Monthly Weather Review,111(11):2 224-2 243,https://doi.org/10.1175/1520-0493(1983)111<2224:TPOTPB>2.O.CO;2.
    Sugimoto S,Aono K,Fukui S.2017.Local atmospheric re sponse to warm mesoscale ocean eddies in the Kuro shioOyashio confluence region.Science Reports,7(1):11 871,https://doi.org.10.103 8/s415 98-017-12206-9.
    Sugimoto S,Hanawa K.2011.Roles of SST anomalies on thewintertime turbulent heat fluxes in the kuroshio-oyashio confluence region:influences of warm eddies detached from the kuroshio extension.Journal of Climate,24(24):6 551-6 561,https://doi.org.10.1175/2011JCLI4023.1.
    Sweet W R,Fett R,Kerling J,La Violette P.1981.Air-sea interaction effects in the lower troposphere across the north wall of the Gulf Stream.Monthly Weather Review,109(5):1 042-1 052,https://doi.org/10.1175/1520-0493(1981)109<1042:ASIEIT>2.0.CO;2.
    Wallace J M,Mitchell T P,Deser C.1989.The influence of sea-surface temperature on surface wind in the eastern equatorial pacific:seasonal and interannual variability.Journal of Climate,2(12):1492-1 499,https://doi.org/10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2.
    Xie S P.2004.Satellite observations of cool ocean-atmosphere interaction.Bulletin of the American Meteorological Society,85(2):195-208,https://doi.org/10.1175/BAMS-85-2-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700