深冷液化空气储能系统的关键因素影响规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of key operation parameters on cryogenic liquefied air energy storage system
  • 作者:黄葆华 ; 葛俊 ; 倪经纬 ; 王维萌 ; 刘迎文 ; 何雅玲
  • 英文作者:HUANG Bao-hua;GE Jun;NI Jing-wei;WANG Wei-meng;LIU Ying-wen;HE Ya-ling;Electric Power Research Institute of State Grid Jibei Electric Power Co.,Ltd.;State Grid Jibei Electric Power Co.,Ltd.;School of Energy and Power Engineering,Xi'an Jiaotong University;
  • 关键词:深冷液化空气储能系统 ; Aspen ; Plus ; 热力学分析 ; 系统优化
  • 英文关键词:cryogenic liquefied air energy storage system;;Aspen Plus;;thermodynamic analysis;;system optimization
  • 中文刊名:XKXB
  • 英文刊名:Journal of Xi'an University of Science and Technology
  • 机构:国网冀北电力有限公司电力科学研究院;国网冀北电力有限公司;西安交通大学能源与动力工程学院;
  • 出版日期:2019-07-31
  • 出版单位:西安科技大学学报
  • 年:2019
  • 期:v.39;No.168
  • 基金:国家电网公司总部科技项目资助(52018K170028)
  • 语种:中文;
  • 页:XKXB201904016
  • 页数:9
  • CN:04
  • ISSN:61-1434/N
  • 分类号:122-130
摘要
立足于提高深冷液化空气储能系统能量转换效率,建立了深冷液化空气储能系统的热力学模型,借助Aspen Plus商用软件建立了热力计算的稳态仿真模型。模型验证工作说明了仿真模型的计算准确性。开展了设计工况下系统热力学分析研究,结合系统性能参数,分析了系统效率较低的原因并指出了优化方向;研究了压缩机级数、压缩机级间冷却方案和膨胀机级数等系统关键运行参数对系统及部件性能的影响规律。结果表明:系统采用原始设计方案时,压缩热利用率仅有38.42%,导致系统效率较低,仅为31.11%,可通过改善系统压缩热利用情况显著提升系统效率;当压缩机级数减少、采用无级间冷却方案时,膨胀机入口再热温度显著增加,使得系统效率大幅提升;随着膨胀机级数的增多,膨胀环节压缩热利用总量越多,系统效率越高。在此基础上,进一步探究了系统内部耦合提效方法,提出了一种系统优化设计方案,相较于原始设计方案,压缩热利用率提高至64.12%,系统效率提升至41.82%.研究结果可为深冷液化空气储能系统优化及其工程应用提供理论参考。
        In order to improve the energy conversion efficiency of cryogenic liquefied air energy storage system,the thermodynamic model of cryogenic liquefied air energy storage system was established,and the steady-state simulation model of thermal calculation was established by Aspen Plus commercial software.Model validation shows the accuracy of the simulation model.Thermodynamic analysis of the system under designing conditions was pointed out.The reasons for the low efficiency of the system were analyzed and the optimization direction was pointed out.The influence of three key operating parameters of the system,such as compressor stage number,compressor interstage cooling scheme and expander stage number,on the performance of the system and its components was discussed.The results show that the utilization rate of compression heat for the original system solution is only 38.42%,which leads to the low efficiency of the system,only 31.11%.The system efficiency can be significantly increased by improving the utilization of compression heat of the system.As the compressor stage number is reduced and non-interstage cooling scheme adopted,the inlet temperature of the expander increases significantly with the system efficiency greatly improved.The increase of the expander stage number results in the fact that the more the total amount of compression heat used in expansion period,the higher the system efficiency.On this basis,the method for improving efficiency by internal parameters coupling is further explored,and an optimized system solution was proposed.Compared with the original system solution,the utilization ratio of compression heat is increased to 64.12%,and the efficiency of the system is increased to 41.82%.The research results can provide a reference to the optimization of cryogenic liquefied air energy storage system and its engineering application.
引文
[1] Bove R,Bucher M,Ferretti F.Integrating large shares of wind energy in macro-economical cost-effective way[J].Energy,2012,43(1):438-447.
    [2] 白芳,张沛,尹少武,等.低温液空储能流程模拟及优化[J].储能科学与技术,2017,6(4):753-757.BAI Fang,ZHANG Pei,YIN Shao-wu,et al.Simulation and optimization of cryogenic liquid energy storage process[J].Energy Storage Science and Technology,2017,6(4):753-757.
    [3] 张文亮,丘明,来小康.储能技术在电力系统中的应用[J].电网技术,2008,32(7):1-9.ZHANG Wen-liang,QIU Ming,LAI Xiao-kang.Application of energy storage technology in power grids[J].Power System Technology,2008,32(7):1-9.
    [4] Lund H,Salgi G.The role of compressed air energy storage(CAES)in future sustainable energy systems[J].Energy Conversion & Management,2009,50(5):1172-1179.
    [5] Albino V,Ardito L,Dangelico R M,et al.Understanding the development trends of low-carbon energy technologies:a patent analysis[J].Applied Energy,2014,135:836-854.
    [6] Lee I,Park J,You F,et al.A novel cryogenic energy storage system with LNG direct expansion regasification:design,energy optimization,and exergy analysis[J].Energy,2019,173:691-705.
    [7] 徐桂芝,宋洁,王乐,等.深冷液化空气储能技术及其在电网中的应用分析[J].全球能源互联网,2018(3):330-337.XU Gui-zhi,SONG Jie,WANG Le,et al.Cryogenic liquefied air energy storage technology and its application analysis in power grid[J].Journal of Global Energy Interconnection,2018(3):330-337.
    [8] Chen H,Cong T,Yang W,et al.Progress in electrical energy storage system:a critical review[J].Process in Nature Science,2009,19(3):291-312.
    [9] Guo H,Xu Y,Chen H,et al.Thermodynamic charateristics of a novel supeicritical compressed air energy storage system[J].Energy Conversion and Management,2016,115:167-177.
    [10] Budt M,Wolf D,Span R,et al.A review on compressed air energy storage:basin principles,past milestones and recont development[J].Applied Energy,2016,170:250-268.
    [11] Chino K,Araki H.Evaluation of energy storage method using liquid air[J].Heat Transfer-Asian Research,2015,29(5):347-357.
    [12] 李小仨,钱则刚,杨启超,等.压缩空气储能技术现状分析[J].流体机械,2013,41(8):40-44.LI Xiao-san,QIAN Ze-gang,YANG Qi-chao,et al.Techniques summarization and efficiency analysis of compressed air energy storage[J].Fluid Machinery,2013,41(8):40-44.
    [13] 梅生伟,薛小代,陈来军.压缩空气储能技术及其应用探讨[J].南方电网技术,2016,10(3):11-15.MEI Sheng-wei,XUE Xiao-dai,CHEN Lai-jun.Discussion on compressed air energy storage technology and its application[J].Southern Power System Technology,2016,10(3):11-15.
    [14] Luo X,Wang J,Dooner M,et al.Overview of current development in compressed air energy storage technology[J].Energy Procedia,2014,62:603-611.
    [15] 王维萌,黄葆华,徐桂芝,等.一种基于深冷液化空气储能技术的新型发电系统概述[J].华北电力技术,2017(3):46-52.WANG Wei-ming,HUANG Bao-hua,XU Gui-zhi,et al.Introduction to a novel power generation system based on liquid air energy storage technology[J].North China Electric Power,2017(3):46-52.
    [16] Chino K,Araki H.Evaluation of energy storage method using liquid air[J].Heat Transfer-Asian Res.,2000,29(5):347-357.
    [17] Antonelli M,Desideri U,Giglioli R,et al.Liquid air energy storage:a potential low emissions and efficient storage system[J].Energy Procedia,2016,88:693-697.
    [18] Guizzi G L,Manno M,Tolomei L M,et al.Thermodynamic analysis of a liquid air energy storage system[J].Energy,2015,93(2):1639-1647.
    [19] Morgan R,Nelmes S,Gibson E,et al.Liquid air energy storage-analysis and first results from a pilot scale demonstration plant[J].Applied Energy,2015,137:845-853.
    [20] Kantharaj B,Garvey S D,Pimm A J.Compressed air energy storage with liquid air capacity extension[J].Applied Energy,2015,157:152-164.
    [21] Sciacovelli A,Vecchi A,Ding Y.Liquid air energy storage(LAES)with packed bed cold thermal storage-from component to system level performance through dynamic modelling[J].Applied Energy,2017,190:84-98.
    [22] 任彦,黄葆华,徐桂芝,等.基于一种深冷液化空气储能发电系统的多系统耦合启动研究[J].华北电力技术,2017(4):38-43.REN Yan,HUANG Bao-hua,XU Gui-zhi,et al.Study on multi-system coupling start based on cryogenic liquefied air energy storage and power generation system[J].North China Electric Power,2017(4):38-43.
    [23] 何青,王立健,刘文毅.深冷液化空气储能系统的热力学建模及分析[J].华中科技大学学报(自然科学版),2018,46(10):127-132.HE Qing,WANG Li-jian,LIU Wei-yi.Thermodynamic model and exergy analysis of cryogenic liquefied air energy storage system[J].Journal of Huazhong University of Science and Technology(Natural Science Edition),2018,46(10):127-132.
    [24] Guo H,Xu Y,Chen H,et al.Thermodynamic characteristics of a novel supercritical compressed air energy storage system[J].Energy Conversion and Management,2016,115:167-177.
    [25] Borri E,Tafone A,Romagnoli A.A preliminary study on the optimal configuration and operating range of a “microgrid scale” air liquefaction plant for Liquid Air Energy Storage[J].Energy Conversion and Management,2017,143:275-285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700