PVDF中空纤维换热管超疏水表面强化蒸气滴状冷凝传热
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Enhancement on steam dropwise condensation heat transfer with superhydrophobic surfaces of PVDF hollow fiber heat exchange tubes
  • 作者:柴叶霞 ; 陈华艳 ; 贾悦 ; 李丹丹 ; 武春瑞 ; 吕晓龙
  • 英文作者:CHAI Yexia;CHEN Huayan;JIA Yue;LI DANDan;WU Chunrui;LYU Xiaolong;State Key Laboratory of Separation Membranes and Membrane Processes;School of Environmental and Chemical Engineering, Tianjin Polytechnic University;School of Materials Science and Engineering, Tianjin Polytechnic University;
  • 关键词:聚偏氟乙烯 ; 塑料换热管 ; 超疏水表面 ; 滴状冷凝 ; 传热系数
  • 英文关键词:polyvinylidene fluoride;;plastic heat exchange tube;;superhydrophobic surface;;dropwise condensation;;heat transfer coefficient
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:省部共建分离膜与膜过程国家重点实验室;天津工业大学环境与化学工程学院;天津工业大学材料科学与工程学院;
  • 出版日期:2018-11-06 11:01
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金项目(51408415);; 天津市自然科学基金项目(17JCYBJC17400)
  • 语种:中文;
  • 页:HGSZ201904011
  • 页数:9
  • CN:04
  • ISSN:11-1946/TQ
  • 分类号:96-104
摘要
为了提高塑料换热管的传热性能,通过两步涂覆法制备了具有超疏水表面的复合塑料换热管。首先采用多孔PVDF中空纤维膜为支撑层,以导热材料纳米ZnO填充聚二甲基硅氧烷(PDMS)为皮层,制备了具有致密外表皮层的复合塑料换热管。其次为了强化蒸气的滴状冷凝传热,通过考察正硅酸乙酯含量,氨水含量等条件的影响,制备出了具有超疏水表面的PVDF复合塑料换热管。结果表明,所制备的换热管表面接触角可达154°,与熔融法及NIPS法制备的换热管相比,总传热系数可提高85.3%~147.3%。
        To improve the heat transfer performance of the plastic heat exchange tube, a composite plastic heat exchange tube with a superhydrophobic surface was prepared by a two-step coating method. Firstly, the porous polyvinylidene fluoride(PVDF) hollow fiber membrane was used as the supporting layer, and polydimethylsiloxane(PDMS) was filled with thermal conductive material nano-ZnO as the skin layer to prepare the composite plastic heat exchange tube with a dense outer skin layer. Secondly, the PVDF composite plastic heat exchange tube with superhydrophobic surface was prepared by investigating the influence of teraethoxysilane(TEOS) and ammonia content, which enhanced the dropwise condensation heat transfer performance of steam. The results showed that the outer surface contact angle of the prepared heat exchange tube can reach 154°. Compared with the heat exchange tubes prepared by the melting method and the NIPS method, the total heat transfer coefficient could be increased by85.3%—147.3%.
引文
[1]吕明璐,杨鑫,张瑶.换热器的现状分析及分类应用[J].当代化工, 2018, 47(3):582-584.Lyu M L, Yang X, Zhang Y. Current situation analysis and classified application of heat exchangers[J]. Contemporary Chemical Industry, 2018, 47(3):582-584.
    [2] Hong X, Liao Z, Sun J, et al. New insights into T-H/H-F diagrams for synthesis of heat exchanger networks inside heat integrated water allocation networks[J]. Industrial&Engineering Chemistry Research, 2018, 57(28):9323-9328.
    [3]陈林,孙颖颖,杜小泽,等.回收烟气余热的特种耐腐蚀塑料换热器的性能分析[J].中国电机工程学报, 2014, 34(17):2778-2783.Chen L, SunY Y, Du X Z, et al. Performance analysis of special corrosion-resistant plastic heat exchanger for flue gas waste heat recovery[J]. Chinese Journal of Electrical Engineering, 2014, 34(17):2778-2783.
    [4] Chen X, Su Y, Aydin D, et al. Experimental investigations of polymer hollow fibre integrated evaporative cooling system with the fibre bundles in a spindle shape[J]. Energy&Buildings, 2017,154:166-174.
    [5] Zaheed L, Jachuck R J J. Review of polymer compact heat exchangers, with special emphasis on a polymer film unit[J].Applied Thermal Engineering, 2004, 24(16):2323-2358.
    [6] Qin Y, Li B, Wang S. Experimental investigation of a novel polymeric heat exchanger using modified polypropylene hollow fibers[J]. Industrial&Engineering Chemistry Research, 2012, 51(2):882-890.
    [7]王攀.基于全塑蒸发器的低温多效海水淡化系统研究[D].天津:天津工业大学, 2014.Wang P. Research on low temperature multi-effect seawater desalination system based on all-plastic evaporator[D]. Tianjin:Tianjin Polytechnic University, 2014.
    [8]于杰.湿法纺丝制备PVDF换热毛细管及其性能研究[D].天津:天津工业大学, 2016.Yu J. Preparation of PVDF heat exchange capillary by wet spinning and its properties[D]. Tianjin:Tianjin University of Technology, 2016.
    [9] Phadnis A, Rykaczewski K. The effect of Marangoni convection on heat transfer during dropwise condensation on hydrophobic and omniphobic surfaces[J]. International Journal of Heat&Mass Transfer, 2017, 115:148-158.
    [10] Xie X, Weng Q, Luo Z, et al. Thermal performance of the flat micro-heat pipe with the wettability gradient surface by laser fabrication[J]. International Journal of Heat&Mass Transfer,2018, 125:658-669.
    [11] Hoenig S, Bonner R. Dropwise condensation on superhydrophobic microporous wick structures[J]. Journal of Heat Transfer, 2018,140(7):7.
    [12] Li S, Cai W, Chen J, et al. Numerical study on condensation heat transfer and pressure drop characteristics of ethane/propane mixture upward flow in a spiral pipe[J]. International Journal of Heat&Mass Transfer, 2018, 121:170-186.
    [13] Starostin A, Valtsifer V, Barkay Z, et al. Drop-wise and film-wise water condensation processes occurring on metallic micro-scaled surfaces[J]. Applied Surface Science, 2018, 444:604-609.
    [14]周兴东,马学虎,兰忠,等.滴状冷凝强化含不凝气的蒸气冷凝传热机制[J].化工学报, 2007, 58(7):1619-1625.Zhou X D, Ma X H, Lan Z, et al. Condensation heat transfer mechanism of steam containing non-condensable gas by droplet condensation[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(7):1619-1625.
    [15]马学虎,陈嘉宾,徐敦颀,等.聚合物表面性能对强化冷凝传热的影响[J].化工学报, 2002, 53(12):1221-1226.Ma X H, Chen J B, Xu D Q, et al. Effect of polymer surface properties on enhanced condensation heat transfer[J]. Journal of Chemical Industry and Engineering(China), 2002, 53(12):1221-1226.
    [16]阮艺平,张莉,徐宏.铜表面物理化学有序度对蒸汽冷凝特性的影响[J].化工学报, 2012, 63(1):90-95.Ruan Y P, Zhang L, Xu H. Effect of physical and chemical order of copper surface on vapor condensation characteristics[J]. CIESC Journal, 2012, 63(1):90-95.
    [17]何平,王立业,王浩然.复合沉积(PTFE)表面强化冷凝传热的实验研究[J].化工学报, 2000, 51(S1):330-334.He P, Wang L Y, Wang H R. Experimental study on surface condensation enhanced heat transfer of composite deposition(PTFE)[J]. Journal of Chemical Industry and Engineering(China),2000, 51(S1):330-334.
    [18] Guo Q, Li M X, Gu H X. Condensation heat transfer characteristics of low-GWP refrigerants in a smooth horizontal mini tube[J]. International Journal of Heat&Mass Transfer, 2018,126:26-38.
    [19] Wang X W, Ho J Y, Leong K C, et al. Condensation heat transfer and pressure drop characteristics of R-134a in horizontal smooth tubes and enhanced tubes fabricated by selective laser melting[J].International Journal of Heat&Mass Transfer, 2018, 126:949-962.
    [20]王洪军,吕保献,翟高岭,等.硅橡胶膜强化传热管的制备及其滴状冷凝传热研究[J].化工机械, 2010, 37(2):135-137.Wang H J, Lyu B X, Zhai G L, et al. Preparation and dropwise condensation heat transfer of silicon rubber membrane heat transfer tubes[J]. Chemical Machinery, 2010, 37(2):135-137.
    [21] Sharma C S, Stamatopoulos C, Suter R, et al. Rationally 3Dtextured copper surfaces for Laplace pressure imbalance induced enhancement in dropwise condensation[J]. ACS Applied Materials&Interfaces, 2018, 10(34):29127-29135.
    [22] Zhang P, Maeda Y, Lv F, et al. Enhanced coalescence-induced droplet-jumping on nanostructured superhydrophobic surfaces in the absence of microstructures[J]. ACS Applied Materials&Interfaces, 2017, 9(40):35391-35403.
    [23] Chen X, Weibel J A, Garimella S V. Characterization of coalescence-induced droplet jumping height on hierarchical superhydrophobic surfaces[J]. ACS Omega, 2017, 2(6):2883-2890.
    [24] Wen R, Zhong L, Peng B, et al. Wetting transition of condensed droplets on nanostructured superhydrophobic surfaces:coordination of surface properties and condensing conditions[J].ACS Applied Materials&Interfaces, 2017, 9(15):13770-13777.
    [25] Zhu J, Luo Y, Tian J, et al. Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance[J]. ACS Applied Materials&Interfaces, 2015, 7(20):10660-10665.
    [26] Zhao Y, Luo Y, Zhu J, et al. Copper-based ultrathin nickel nanocone films with high-efficiency dropwise condensation heat transfer performance[J]. ACS Applied Materials&Interfaces,2015, 7(22):11719-11723.
    [27]?l?ero?lu E, McCarthy M. Self-organization of microscale condensate for delayed flooding of nanostructured superhydrophobic surfaces[J]. ACS Applied Materials&Interfaces, 2016, 8(8):5729-5736.
    [28]贾巍,高启君,吕晓龙,等. PVDF中空纤维换热管亲/疏水组合表面强化蒸汽冷凝传热[J].化工学报, 2018, 69(7):2935-2943.Jia W, Gao Q J, Lyu X L, et al. Enhancement on steam condensation heat transfer with hydrophilic/hydrophobic combination surfaces of PVDF hollow fiber heat exchange tubes[J]. CIESC Journal, 2018, 69(7):2935-2943.
    [29]张燕,陈华艳,高启君,等.基于PVDF疏水膜的界面聚合改性制备换热管[J].膜科学与技术, 2017, 37(3):14-20.Zhang Y, Chen H Y, Gao Q J, et al. Preparation of heat exchanger tube by interfacial polymerization modification based on PVDF hydrophobic membrane[J]. Membrane Science and Technology,2017, 37(3):14-20.
    [30]倪非非,舒桂明,李可.用于胆红素吸附的β-环糊精改性PVDF血浆分离膜的制备[J].膜科学与技术, 2018, 38(3):16-24.Ni F F, Shu G M, Li K. Preparation of PVDF plasma separation adsorption membrane by modifiedβ-cyclodextrin for bilirubin removal[J]. Membrane Science and Technology, 2018, 38(3):16-24.
    [31]刘治宇.套管式气隙膜蒸馏组件设计与实验研究[D].天津:天津工业大学, 2018.Liu Z Y. Design and experimental study of casing air gap membrane distillation module[D]. Tianjin:Tianjin Polytechnic University, 2018.
    [32]李丹丹. PVDF全塑蒸发器的制备及其性能研究[D].天津:天津工业大学, 2018.Li D D. Preparation and performance of PVDF full plastic evaporator[D]. Tianjin:Tianjin Polytechnic University, 2018.
    [33]于杰,陈华艳,高启君,等.基于毛细润湿机理的PVDF中空纤维换热毛细管制备及其性能研究[J].功能材料, 2016, 47(10):10091-10095.Yu J, Chen H Y, Gao Q J, et al. The preparation and performance of PVDF hollow fiber heat capillary based on capillary wetting mechanism[J]. Journal of Functional Materials, 2016, 47(10):10091-10095.
    [34]张力,王健农,许前锋.溶胶-凝胶法制备透明超疏水性SiO2涂层[J].材料导报, 2008, 22(s3):112-114.Zhang L, Wang J N, Xu Q F. Preparation of transparent superhydrophobic SiO2coating by sol-gel method[J]. Material Guide,2008, 22(s3):112-114.
    [35] Edalatpour M, Liu L, Jacobi A M, et al. Managing water on heat transfer surfaces:a critical review of techniques to modify surface wettability for applications with condensation or evaporation[J].Applied Energy, 2018, 222(C):967-992.
    [36]邹锐.改性SiO2复合溶胶的制备及棉织物超疏水表面的构筑研究[D].上海:上海工程技术大学, 2014.Zou R. Preparation of modified SiO2composite sol and construction of superhydrophobic surface of cotton fabric[D].Shanghai:Shanghai University of Engineering and Technology,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700