500 kV覆冰四分裂导线舞动特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Galloping Characteristics of 500 kV Iced Quad Bundle Conductor
  • 作者:王黎明 ; 王琼 ; 陆佳政 ; 张中浩 ; 黄婷
  • 英文作者:WANG Liming;WANG Qiong;LU Jiazheng;ZHANG Zhonghao;HUANG Ting;Graduate School at Shenzhen,Tsinghua University;Economic Research Institute,State Grid Jiangsu Electric Power Co.,Ltd.;State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission and Distribution Equipment,State Grid Hunan Electric Power Company Limited Disaster Prevention & Reduction Center;
  • 关键词:500 ; kV四分裂导线 ; 新月形覆冰 ; 导线舞动 ; 空气动力学参数 ; 非线性计算 ; 3DOF
  • 英文关键词:500 kV quad bundle conductor;;crescent icing;;conductor galloping;;aerodynamic parameters;;non-linear calculations;;3DOF
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:清华大学深圳研究生院;国网江苏省电力有限公司经济技术研究院;国网湖南省电力有限公司防灾减灾中心电网输变电设备防灾减灾国家重点实验室;
  • 出版日期:2019-07-12
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.320
  • 基金:国家电网公司科技项目(5216A5140018)~~
  • 语种:中文;
  • 页:GDYJ201907031
  • 页数:8
  • CN:07
  • ISSN:42-1239/TM
  • 分类号:275-282
摘要
输电导线舞动是线路运行中常见的现象,舞动会导致输电线路发生电气和机械事故。为了保证电网的安全稳定运行,有必要深入研究线路舞动的特点。为此,建立了3自由度多档导线的运动模型,利用Fluent计算空气动力学参数,针对一条500 kV覆冰四分裂导线的舞动影响因素进行了详细研究。采用基于中心差分的显性直接积分算法,通过数值计算,比较了不同风速、覆冰厚度、导线型号下的舞动情况,并分析了导线突然脱冰时的舞动情况。研究结果表明:在起舞风速与舞动最大幅值对应的风速之间,舞动幅值随风速的增加近似呈现线性增加的趋势;厚覆冰更易发生舞动,但厚度过大会破坏舞动;在相同的覆冰条件下,小截面导线比大截面导线更易产生舞动;导线突然脱冰后,舞动幅值迅速下降,仅做小幅度摆动。研究结果对实际工程中500 kV导线在不同气象条件下的舞动幅值预测及防舞技术的应用具有一定的指导作用。
        Conductor galloping is common during the operation of transmission lines, which may result in electrical and mechanical accidents of the transmission line. In order to ensure the safety and stable operation of power grid, it is necessary to study the characteristics of galloping deeply. The multi-span 3-degree-of-freedom(3 DOF) dynamic model for conductor was established in this paper, and the aerodynamic parameters were calculated by the Fluent software, and the research on a 500 kV iced quad bundle conductor galloping was also conducted in detail. Based on the explicit central difference integral algorithm, the galloping conditions under different wind speeds, ice thickness, wire types were discussed, and the results under sudden ice shedding were analyzed. The research results show that the amplitude between the minimum and maximum wind velocity that leads to gallop will increase almost linearly corresponding to the wind velocity; the increasing ice thickness makes the conductor easier to gallop, but too large thickness will destroy the conductor galloping; under the same ice cover, the small cross-section conductor is easier to produce galloping; sudden ice shedding will rapidly decrease the galloping amplitude, leading to a small vibration. The research results have a certain guiding effect on the prediction of the amplitude of the 500 kV wire in actual engineering under different meteorological conditions and the application of anti-dance technology.
引文
[1]郭应龙,李国兴,尤传永.输电线路舞动[M].北京:中国电力出版社,2003.GUO Yinglong,LI Guoxing,YOU Chuanyong.Transmission line galloping[M].Beijing,China:China Electric Power Press,2003.
    [2]WANG J.Overhead transmission line vibration and galloping[C]//International Conference on High Voltage Engineering and Application.[S.l.]:IEEE,2008:120-123.
    [3]王黎明,高亚云,卢明,等.特高压输电线路新型防舞技术计算[J].高电压技术,2017,43(8):115-124.WANG Liming,GAO Yayun,LU Ming,et al.Calculation of new anti-dancing technology for UHV transmission lines[J].High Voltage Engineering,2017,43(8):115-124.
    [4]尹晖,张晓鸣,李小祥,等.基于视频监测的输电线路舞动信息提取与频谱分析[J].高电压技术,2017,43(9):127-133.YIN Hui,ZHANG Xiaoming,LI Xiaoxiang,et al.Extraction and spectrum analysis of transmission line galloping information based on video monitoring[J].High Voltage Engineering,2017,43(9):127-133.
    [5]DENHARTOG J P.Transmission line vibration due to sleet[J].Transactions of the American Institute of Electrical Engineers,1933,51(4):1074-1076.
    [6]NIGOL O,BUCHAN P G.Conductor galloping part I-Den Hartog mechanism[J].IEEE Transactions on Power Apparatus&Systems,1981,100(2):699-707.
    [7]NIGOL O,BUCHAN P G.Conductor galloping-part II Torsional mechanism[J].IEEE Transactions on Power Apparatus&Systems,1981,100(2):708-720.
    [8]NIGOL O,CLARKE G J,HAVARD D G.Torsional stability of bundle conductors[J].IEEE Transactions on Power Apparatus&Systems,1977,96(5):1666-1674.
    [9]NIGOL O,CLARKE G J.Conductor galloping and control based on torsional mechanism[C]∥IEEE Transactions on Power Apparatus and Systems.New York,America:IEEE,1974:1729-1729.
    [10]ZHANG Q,POPPLEWELL N,SHAH A H.Galloping of bundled conductor[J].Journal of Sound and Vibration,2000,234(1):115-137.
    [11]王丽新,杨文兵,杨新华,等.输电线路舞动的有限元分析[J].华中科技大学学报,2004,21(1):76-80.WANG Lixin,YANG Wenbing,YANG Xinhua,et al.Finite element analysis of galloping of transmission lines[J].Journal of Huazhong University of Science and Technology,2004,21(1):76-80.
    [12]LUONGO A,ZULLI D,PICCARDO G.A linear curved-beam model for the analysis of galloping in suspended cables[J].Journal of Mechanics of Materials&Structures,2007,2(4):675-694.
    [13]孙珍茂,楼文娟.覆冰输电导线舞动非线性有限元分析[J].电网技术,2010,34(12):214-218.SUN Zhenmao,LOU Wenjuan.Nonlinear finite element analysis of galloping of iced transmission line[J].Power System Technology,2010,34(12):214-218.
    [14]严波,胡景,周松,等.覆冰四分裂导线舞动数值模拟及参数分析[J].振动工程学,2010,23(3):310-316.YAN Bo,HU Jing,ZHOU Song,et al.Numerical simulation and parameter analysis of iced four split conductor galloping[J].Vibration Engineering,2010,23(3):310-316.
    [15]侯镭.架空输电线路导线非线性动力特性研究[D].北京:清华大学,2008.HOU Lei.Research on the non-linear dynamic characteristics of the electric overhead transmission lines[D].Beijing,China:Tsinghua University,2008.
    [16]王黎明,曹露,梅红伟,等.1 000 kV特高压交流紧凑型输电线路综合工况下间隔棒抑制效果仿真研究[J].高电压技术,2017,43(11):3661-3667.WANG Liming,CAO Lu,MEI Hongwei,et al.Simulation research on the suppression effect of spacers on 1 000 k V UHV AC compact transmission lines under comprehensive conditions[J].High Voltage Engineering,2017,43(11):3661-3667.
    [17]邵天晓.架空送电线路的电线力学计算[M].北京:中国电力出版社,2003.SHAO Tianxiao.Mechanical calculation of electrical wire of overhead transmission lines[M].Beijing,China:China Power Press,2003.
    [18]刘晶波,杜修力.结构动力学[M].北京:机械工业出版社,2005.LIU Jingbo,DU Xiuli.Structural dynamics[M].Beijing,China:China Machine Press,2005.
    [19]MCCLURE G,LAPOINTE M.Modeling the structural dynamic response of overhead transmission lines[J].Computers and Structures,2003,81(8/9/10/11):825-834.
    [20]BARBIERI N,DE SOUZA JUNIOR O H,BARBIERI R.Dynamical analysis of transmission line cables,part 1-liner theory[J].Mechanical Systems and Signal Processing,2004,18(3):659-669.
    [21]RAWLINS C B.Long span problem in the analysis of conductor vibration damping[J].IEEE Transactions on Power Delivery,2000,15(2):770-776.
    [22]MUNASWAMY K,HALDAR A.Self-damping measurements of conductors with circular and trapezoidal wires[J].IEEE Transactions on Power Delivery,2000,15(2):604-609.
    [23]DIANA G,FALCO M,CIGADA A,et al.On the measurement of overhead transmission lines conductor self-damping[J].IEEE Transactions on Power Delivery,2000,15(1):285-292.
    [24]楼文娟,罗罡,杨晓辉,等.输电线路动态风偏响应特性及频域计算方法[J].高电压技术,2017,43(5):1493-1499.LOU Wenjuan,LUO Gang,YANG Xiaohui,et al.Dynamic windage response characteristics of transmission lines and frequency domain calculation methods[J].High Voltage Engineering,2017,43(5):1493-1499.
    [25]徐元利,徐元春,梁兴,等.FLUENT软件在圆柱绕流模拟中的应用[J].水利电力机械,2005,27(1):39-41.XU Yuanli,XU Yuanchun,LIANG Xing,et al.Application of.FLUENT software in the simulation of flow around a cylinder[J].Water Conservancy and Electric Power Machinery,2005,27(1):39-41.
    [26]黄河,刘建军,李万平.覆冰导线绕流的数值模拟[J].辽宁工程技术大学学报,2004,23(6):767-769.HUANG He,LIU Jianjun,LI Wanping.Numerical simulation of flow around iced conductors[J].Journal of Liaoning Technical University,2004,23(6):767-769.
    [27]李万平,黄河,何锃.特大覆冰导线气动力特性测试[J].华中科技大学学报,2001,29(8):84-86.LI Wanping,HUANG He,HE Cheng.Aerodynamic characteristics of heavily iced conductors[J].Journal of Huazhong University of Science and Technology,2001,29(8):84-86.
    [28]刘小会.覆冰导线舞动非线性数值模拟方法及风洞模型试验[D].重庆:重庆大学,2011.LIU Xiaohui.Nonlinear numerical simulation method and wind tunnel model test of iced conductor galloping[D].Chongqing,China:Chongqing University,2011.
    [29]王少华,基于Fluent的覆冰导线气动特性分析[J].高压电器,2012,48(1):64-69.WANG Shaohua.Analysis of aerodynamic characteristics of iced conductor based on fluent[J].High Voltage Apparatus,2012,48(1):64-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700