发汗冷却中多孔壁面添质通道流动的实验和数值研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental and Numerical Study on Channel Flow of Porous Wall in Transpiration Cooling
  • 作者:赵广播 ; 肖雪峰 ; 易珺 ; 周伟星
  • 英文作者:ZHAO Guang-bo;XIAO Xue-feng;YI Jun;ZHOU Wei-xing;School of Energy Science and Engineering,Harbin Institute of Technology;Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology;
  • 关键词:多孔介质 ; 发汗冷却 ; 边界层 ; 实验研究 ; 数值模拟
  • 英文关键词:Porous media;;Transpiration cooling;;Boundary layer;;Experimental investigate;;Numerical simulation
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:哈尔滨工业大学能源科学与动力工程学院;哈尔滨工业大学基础与交叉科学研究院;
  • 出版日期:2018-05-23 09:10
  • 出版单位:推进技术
  • 年:2018
  • 期:v.39;No.252
  • 基金:国家自然科学基金(51676056)
  • 语种:中文;
  • 页:TJJS201806017
  • 页数:7
  • CN:06
  • ISSN:11-1813/V
  • 分类号:145-151
摘要
发汗冷却相比常规主动冷却方式是冷却效率更高、覆盖性能更好的热防护技术。为了研究发汗冷却中的添质流动现象,通过带有红外热成像技术的发汗冷却实验平台,在雷诺数1.35×105和总温373K的来流条件下对金属颗粒烧结多孔材料的发汗冷却效果进行了研究,得到了在不同注入率条件下多孔壁面的温度分布,结果显示平均冷却效率与注入率之间近似呈线性关系,当氮气注入率为33.5%时平均冷却效率接近0.45。通过对比单温度方程的局部热平衡模型和双温度方程的局部非热平衡模型的模拟结果,显示局部非热平衡模型能正确反映发汗冷却过程中的换热过程,模拟结果和实验数据具有较高吻合度。模拟结果表明:多孔壁面边界层随注入率的增大而增厚,边界层增厚是发汗冷却具有较高冷却效率的原因之一。
        Transpiration cooling has the advantages of higher cooling efficiency and better coverage compared with the conventional cooling method. It is one of the preferred technologies for the cooling system in the next generation of hypersonic vehicles. In this paper,the transpiration cooling efficiency of metal sintered porous media has been experimentally investigated under the condition of Reynolds number 1.35×105 and total temperature 373 K. The surface temperatures of the porous wall under various blowing ratio are measured using the infrared thermal imaging technique. The experimental results show that the average cooling efficiency is approximately linear with the blowing ratio,the average cooling efficiency is close to 0.45 when the blowing ratio is 33.5%. By comparing between the local thermal equilibrium model of the one-temperature equation and the local thermal non-equilibrium model of the two-temperature equation,it can be considered that the local thermal non-equilibrium model can correctly reflect the heat transfer in transpiration cooling process. The simulation results are in good agreement with the experimental data. The simulation results show that the boundary layer of the porous wall is significantly affected by the blowing ratio,and the thickening of the boundary layer is one of the reasons for the high cooling efficiency of the transpiration cooling.
引文
[1]Fry R S.A Century of Ramjet Propulsion Technology Evolution[J].Journal of Propulsion and Power,2014,20(1):27-58.
    [2]Bouchez M,Dufour E,Cheuret F,et al.Multi-Level Coupled Simulations of Cooled Structures in the ATLLAS European Program[C].Bremen:16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference,2009.
    [3]Osipov V,Hafiychuk H,Devine E,et al.Risk Assessment and Scaling for the SLS LOx ET[R].NASA/TP-2012-216485.
    [4]Mohammed I,Talib A R A,Sultan M T H,et al.Temperature and Heat Flux Measurement Techniques for Aeroengine Fire Test:A Review[J].Series:Materials Science and Engineering,2016,152(1):012036.
    [5]Young J B,Wilcock R C.Modeling the Air-Cooled Gas Turbine,Part 1:General Thermodynamics[J].Journal of Turbomachinery,2002,124(2):207-213.
    [6]Song K D,Sang S H,Scotti S J.Transpiration Cooling Experiment for Scramjet Engine Combustion Chamber by High Heat Fluxes[J].Journal of Propulsion and Power,2006,22(1):96-102.
    [7]Reimer T,Kuhn M,Gülhan A,et al.Transpiration Cooling Tests of Porous CMC in Hypersonic Flow[C].San Francisco:17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference,2011.
    [8]Schwanekamp T,Meyer F,Reimer T,et al.System Studies on Active Thermal Protection of a Hypersonic Suborbital Passenger Transport Vehicle[C].Atlanta:19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference,2014.
    [9]Zhao L,Wang J,Ma J,et al.An Experimental Investigation on Transpiration Cooling under Supersonic Condition Using a Nose Cone Model[J].International Journal of Thermal Sciences,2014,84(4):207-213.
    [10]李青,孙纪国.多孔陶瓷氢气发汗冷却特性研究[J].推进技术,2014,35(10):1387-1391.(LI Qing,SUN Ji-guo.Experimental Investigation of Transpiration Cooling Through Porous Ceramics Using Hydrogen[J].Journal of Propulsion Technology,2014,35(10):1387-1391.)
    [11]Huang Z,Zhu Y H,Xiong Y B,et al.Investigation of Transpiration Cooling for Sintered Metal Porous Struts in Supersonic Flow[J].Applied Thermal Engineering,2014,70(1):240-249.
    [12]Jiang P X,Huang G,Zhu Y,et al.Experimental Investigation of Combined Transpiration and Film Cooling for Sintered Metal Porous Struts[J].International Journal of Heat and Mass Transfer,2017,108:232-243.
    [13]Arai M,Suidzu T.Porous Ceramic Coating for Transpiration Cooling of Gas Turbine Blade[J].Journal of Thermal Spray Technology,2013,22(5):690-698.
    [14]石小祥,胡好生,杨卫华,等.弯曲壁面冲击加发散冷却结构的冷却效果实验研究[J].推进技术,2017,38(3):630-636.(SHI Xiao-xiang,HU Hao-sheng,YANG Wei-hua,et al.Experimental Investigation on Cooling Performance of Impingement/Effusion Cooling Structures on Concave Wall[J].Journal of Propulsion Technology,2017,38(3):630-636.)
    [15]谭晓茗,赵乃芬,房人麟,等.出流孔复合角对发散孔板冷却效率的影响研究[J].推进技术,2016,37(6):1092-1097.(TAN Xiao-ming,ZHAO Nai-fen,FANG Ren-lin,et al.Research on Cooling Characteristics of Effusion Wall with Compound Angle[J].Journal of Propulsion Technology,2016,37(6):1092-1097.)
    [16]Jiang P X,Ren Z P.Numerical Investigation of Forced Convection Heat Transfer in Porous Media Using a Thermal Non-Equilibrium Model[J].International Journal of Heat and Fluid Flow,2001,22(1):102-110.
    [17]Lindner F,Nuske P,Weishaupt K,et al.Transpiration Cooling with Local Thermal Nonequilibrium:Model Comparison in Multiphase Flow in Porous Media[J].Journal of Porous Media,2016,19(2):131-153.
    [18]Aybar H S,Faridani M M.Mathematical Modeling of Transpiration Cooling in Cylindrical Domain[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2015,229(7):1310-1324.
    [19]Lachaud J,Scoggins J B,Magin T E,et al.A Generic Local Thermal Equilibrium Model for Porous Reactive Materials Submitted to High Temperatures[J].International Journal of Heat and Mass Transfer,2017,180:1406-1417.
    [20]Xu R N,Huang Y L,Jiang P X,et al.Internal Heat Transfer Coefficients in Microporous Media with Rarefaction Effects[J].Science China Technological Sciences,2012,55(10):2869-2876.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700