山地果园双履带微型运输车的设计、仿真与试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design,simulation and experimental analysis of a miniature double crawler transport vehicle in mountain orchard
  • 作者:刘佛良 ; 张震邦 ; 杨晓彬 ; 吴伟斌 ; 洪添胜 ; 郑鹏淋 ; 张增博
  • 英文作者:LIU Foliang;ZHANG Zhenbang;YANG Xiaobin;WU Weibin;HONG Tiansheng;ZHENG Penglin;ZHANG Zengbo;College of Engineering,South China Agricultural University;Key Laboratory of Key Technology on Agricultural Machine and Equipment,Ministry of Education/Division of Citrus Machinery,China Agriculture Research System/Guangdong Engineering Technology Research Center for Creative Hilly Orchard Machinery;
  • 关键词:山地果园 ; 双履带运输车 ; 轮毂电机驱动 ; 仿真
  • 英文关键词:mountainous orchard;;double crawler transporter;;electric drive;;simulation
  • 中文刊名:HZNY
  • 英文刊名:Journal of Huazhong Agricultural University
  • 机构:华南农业大学工程学院;华南农业大学南方农业机械与装备关键技术教育部重点实验室/国家柑橘产业技术体系机械研究室/广东省山地果园机械创新工程技术研究中心;
  • 出版日期:2018-07-09 16:56
  • 出版单位:华中农业大学学报
  • 年:2018
  • 期:v.37
  • 基金:公益性行业(农业)科研专项(201403036);; “十二五”农村领域国家科技计划课题(2014BAD16B0103);; 广东省组织部扬帆计划引进创新创业团队专项(201312G06);; 广东省自然科学基金项目(2015A030313426);; 广东省现代农业产业技术体系创新团队—茶叶产业创新团队设施与机械化岗位(2017LM1093)
  • 语种:中文;
  • 页:HZNY201804003
  • 页数:9
  • CN:04
  • ISSN:42-1181/S
  • 分类号:21-29
摘要
设计一种非刚性底盘的以双轮毂电机驱动的山地果园双履带微型运输车,该运输车主体外形尺寸为2 150mm×1 040mm×1 100mm,采用战车式底盘作为行驶机构和双轮毂电机独立驱动及链传动方式。通过SolidWorks软件进行三维建模,创建虚拟样机模型和高台壕沟仿真地形;应用ADAMS软件对运输车底盘行驶机构进行高台和壕沟越障的仿真分析。仿真结果显示,在高台和壕沟越障过程中,质心横向位移的绝对误差在±5%范围内,质心纵向位移的绝对误差在±3%范围内。实地样车试验结果表明,运输车的最大载荷为250kg,最大爬坡度为20°,最高车速为1.8m/s,最小转向半径为0.7m,达到设计要求;其越障能力较强,对地形复杂、路况差甚至无路的山地果园的适应性更好,能较好地满足山地果园的运输要求。
        A double crawler transport vehicle in mountain orchard with non-rigid chassis and dualhub driven motor was designed to solve the problems of the large orchard slope in the mountainous region,the row spacing and spacing of the fruit trees planted is small,the site conditions are poor,the operation environment is complex,the transportation volume of fruits,agricultural resources,and sprays are large,and the small transportation vehicles have difficulties in turning and passing through the mountain orchards with poor peace and harmony.The outline dimension of transporter designed is 2 150 mm×1 040 mm×1 100 mm.It uses chariot chassis as driving mechanism and has dual-wheel hub motor with independent drive and chain drive.Three-dimensional modeling was constructed with the software SolidWorks and the virtual prototype model.The high-platform trenches simulation terrain were created by SolidWorks.The high-platform and trenched obstacle of the transport vehicle's chassis were simulated with software ADAMS.The maximum vehicle speed,minimum turning radius,maximum climbing degree and the energy consumption of the vehicle were tested and analyzed.The results showed that the absolute error of longitudinal displacement of the centroid position was within±5%and the absolute error of lateral displacement of the centroid position was within ±3% during the process of overpassing the platform and the trench.The designed transport vehicle had a maximum load of 250 kg,a maximum climbing degree of 20°and a maximum speed of 1.8 m/s,the minimum turning radius is 0.7 m.Its ability to overcome obstacles is stronger,and its adaptability to mountain orchards with complex terrain,poor road conditions and even no roads is better,and it can better meet the transportation requirements of mountain orchards.
引文
[1]文雁,袁斌,周应恒.中国水果产业增长模式及趋势分析——以柑橘为例[J].世界农业,2017(12):148-155,259-260.
    [2]曾诗淇.大数据助推农业供给侧改革——解析《中国农业展望报告(2016-2025)》[J].农村工作通讯,2016(9):23-25.
    [3]刘杰,张衍林,张闻宇,等.山地果园无动力运输机设计与试验[J].华中农业大学学报,2017,36(1):117-122.
    [4]吴伟斌,游展辉,洪添胜,等.山地果园轮式运输机动力稳定系统测试[J].华中农业大学学报,2017,36(3):86-92.
    [5]杜蒙蒙,姬江涛,杜新武,等.丘陵山区双履带式小型动力底盘的设计[J].农机化研究,2013(9):116-119,124.
    [6]洪添胜,杨洲,宋淑然,等.柑橘生产机械化研究[J].农业机械学报,2010,41(12):105-110.
    [7]洪添胜,张衍林,杨洲.果园机械与设施[M].北京:中国农业出版社,2012:143-147.
    [8]周伟春,鄢飞.载货平台自动调平式履带运输车的开发[J].机电工程技术,2011,40(10):62-65.
    [9]刘斌,王志福.履带车辆动力系统发展综述[J].四川兵工学报,2014,35(1):68-72,83.
    [10]周杰,徐红梅,王君.基于ADAMS的轮式拖拉机行驶平顺性研究[J].华中农业大学学报,2017,36(3):93-100.
    [11]朱余清,洪添胜,吴伟斌,等.山地果园自走式履带运输车抗侧翻设计与仿真[J].农业机械学报,2012,43(S1):19-23.
    [12]濮良贵,陈国定,吴立言.机械设计[M].9版.北京:高等教育出版社,2013.
    [13]马晓波,董希斌,曲杭峰,等.履带式采伐剩余物翻转运输车虚拟设计及运动仿真[J].东北林业大学学报,2018(6):97-101.
    [14]欧阳益斌,李立君,汤刚车,等.油茶林抚育机履带底盘设计与试验研究[J].西北林学院学报,2018,33(2):252-256.
    [15]刘东琴,杨福增,孙立江,等.一种山地动力底盘的结构设计及坡道转向动力学分析[J].拖拉机与农用运输车,2013,40(6):35-37.
    [16]VINCENT I,SUN Q A.Combined reactive and reinforcement learning controller for an autonomous tracked vehicle[J].Robotics&autonomous systems,2012,60(4):599-608.
    [17]王东亮,孙逢春,程守玉,等.一种新型变形轮行走机构研究[J].北京理工大学学报,2012,32(1):33-36.
    [18]BAKER R E,SIMPSON M J.Models of collective cell motion for cell populations with different aspect ratio:diffusion,proliferation and travelling waves[J].Physica A:statistical mechanics and its applications,2012,391(14):3729-3750.
    [19]陈长征.可变形履带行走机构跨越台阶的动力学分析[J].沈阳工业大学学报,2015,37(2):110-125.
    [20]张宏.滑动式履带行走系统动力学建模方法与试验[J].振动测试与诊断,2015(1):70-75.
    [21]宿月文.履带机械地面力学建模及牵引性能仿真与试验[J].西安交通大学学报,2009,43(9):134-138.
    [22]李岩,杨向东,陈恳.履带式移动行走机构动力学建模及其反馈控制[J].清华大学学报(自然科学版),2006,46(8):1377-1380.
    [23]王红岩,王钦龙,芮强,等.高速履带车辆转向过程分析与试验验证[J].机械工程学报,2014,50(16):162-172.
    [24]芮强,王红岩,王钦龙,等.履带车辆转向性能参数分析与试验研究[J].机械工程学报,2015,51(12):127-136.
    [25]王振.单履带动力运输车的研究与设计[D].武汉:华中农业大学,2013.
    [26]陈震邦,周莹.农用电动运输车设计[J].农业机械学报,2005,36(7):153-154,157.
    [27]张季琴,杨福增,刘世.微型履带拖拉机牵引附着性能研究——基于正交试验[J].农机化研究,2013(10):190-193,198.
    [28]KYPRIANOU A E,LIU R L,MURILLO-SALAS A,et al.Supercritical super-Brownian motion with a general branching mechanism and travelling waves[J].Mathematics,2012,48(3):661-687.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700