基于CT探测技术的不良地质构造三维网格模型重构方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A 3D element mesh model reconstruction method for unfavorable geological structure based on CT technology
  • 作者:王启明 ; 车爱兰
  • 英文作者:WANG Qiming;CHE Ailan;School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiaotong University;
  • 关键词:岩土工程 ; 不良地质 ; 弹性波CT ; 三维网格模型 ; 重构方法 ; 仿真度
  • 英文关键词:geotechnical engineering;;unfavorable geology;;elastic wave CT;;3D element mesh model;;reconstruction method;;simulation
  • 中文刊名:YSLX
  • 英文刊名:Chinese Journal of Rock Mechanics and Engineering
  • 机构:上海交通大学船舶海洋与建筑工程学院;
  • 出版日期:2019-01-25 09:59
  • 出版单位:岩石力学与工程学报
  • 年:2019
  • 期:v.38;No.353
  • 基金:国家重点研发计划资助项目(2018YFC0809400)~~
  • 语种:中文;
  • 页:YSLX201906013
  • 页数:11
  • CN:06
  • ISSN:42-1397/O3
  • 分类号:147-157
摘要
不良地质条件下的岩土体稳定性在地下空间工程中引起了广泛关注。针对不良地质条件下的岩土体稳定性,为建立可靠的分析模型对其进行分析与预测,提出基于CT探测技术的不良地质构造三维网格模型重构方法。该方法通过进行弹性波CT仿真并进行区块化Kriging插值获得弹性波速度构造三维可视化模型,利用峰值法进行材料阈值分割,同时利用三维网格构建和材料属性映射,形成目标区域的三维网格模型。结果表明:通过对重构的三维网格模型与初始模型进行对比分析,重构模型的仿真度高达91.44%,体积分数的绝对误差为3.33%;在此基础上,针对桥梁基础落位区开展弹性波CT探测现场试验,重构该区域三维网格模型并进行取芯验证,其仿真度大于84.31%,体积分数的绝对误差小于2.45%。该方法具有较高的建模精度,能够精确地反映不良地质体的空间分布状态,对评价不良地质稳定性具有重要科学意义。
        The stability of rock and soil under unfavorable geological conditions has attracted wide attention in underground space engineering. A 3 D mesh model reconstruction method of unfavorable geological structure based on CT detection technology was proposed to establish a reliable analysis model for evaluating the stability of rock and mass. In this method,a 3 D visualization model of the elastic-wave velocity was obtained by performing numerical simulation of elastic-wave CT detection and block Kriging interpolation. The peak value formula is used for material threshold segmentation,and the 3 D mesh construction and material property mapping are used to form a 3 D grid model in the target region. Comparison between the reconstructed 3 D grid model and the original model shows that the simulation degree of the reconstructed model is as high as 91.44% and the absolute error of the volume fraction is 3.33%. Field test of elastic-wave CT detection was carried out for the bridge foundation location area,and the 3 D mesh model of the region was reconstructed and verified by coring. The simulation degree is greater than 84.31%,and the absolute error of the volume fraction is less than 2.45%. The method has high modeling accuracy and can accurately reflect the spatial distribution state of bad geological bodies,and hence,has important scientific significance for evaluating the stability of poor geological structure.
引文
[1]龙驭球,崔京浩,袁驷,等.力学筑梦中国[J].工程力学,2018,35(1):1-54.(LONG Yuqiu,CUI Jinghao,YUAN Si,et al.Build‘Chinese Dream’with the assistance of mechanics[J].Engineering Mechanics,2018,35(1):1-54.(in Chinese))
    [2]钱七虎.隧道工程建设地质预报及信息化技术的主要进展及发展方向[J].隧道建设,2017,37(3):251-263.(QIAN Qihu.Main Developments and directions of geological prediction and informatized technology of tunnel construction[J].Tunnel Construction,2017,37(3):251-263.(in Chinese))
    [3]李术才,徐振浩,黄鑫,等.隧道突水突泥致灾构造分类、地质判识、孕灾模式与典型案例分析[J].岩石力学与工程学报,2018,37(5):1 041-1 069.(LI Shucai,XU Zhenhao,HUANG Xin,et al.Classification,geological identification,hazard mode and typical case studies of hazard-causing structures for water and mud inrush in tunnels[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(5):1 041-1 069.(in Chinese))
    [4]王千年,车爱兰,郭强,等.孔内声波CT技术在软土地区地下溶洞调查中的应用[J].西北地震学报,2011,33(b08):335-339.(WANG Qiannian,CHE Ailan,GUO Qiang,et al.Technology of borehole sonic computer tomography and its application on survey of underground cave[J].Northwestern Seismological Journal,2011,33(b08):335-339.(in Chinese))
    [5]李高,郑旭辉,张宝君,等.基于弹性波CT技术的岩体破裂探测方法[J].CT理论与应用研究,2015,24(5):681-688.(LI Gao,ZHENG Xuhui,ZHANG Baojun,et al.A detecting method for rock mass fracture based on elastic wave CT technique[J].CT Theory and Applications,2015,24(5):681-688.(in Chinese))
    [6]冯夏庭,周辉,李邵军,等.复杂条件下岩石工程安全性的智能分析评估和时空预测系统[J].岩石力学与工程学报,2008,27(9):1 741-1 756.(FENG Xiating,ZHOU Hui,LI Shaojun,et al.System of intelligent evaluation and prediction in space-time for safety of rock engineering under hazardous environment[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(9):1 741-1 756.(in Chinese))
    [7]姚国鹏.基于骨骼CT图像的三维重构[博士学位论文][D].西安:西安科技大学,2003.(YAO Guopeng.Bone 3D-reconstruction based on CT image[Ph.D.Thesis][D].Xi′an:Xi′an Science and Technology University,2003.(in Chinese))
    [8]HUANG M,LI Y M.X-ray tomography image-based reconstruction of microstructural finite element mesh models for heterogeneous materials[J].Computational Materials Science,2013,67:63-72.
    [9]惠冰,郭牧,王洲,等.基于三维激光技术的路面坑槽多维度指标检测[J].同济大学学报:自然科学版,2018,46(1):60-66.(HUI Bing,GUO Mu,WANG Zhou,et al.Multi-dimensional index detection of potholes based on 3D laser technology[J].Journal of Tongji University:Natural science,2018,46(1):60-66.(in Chinese))
    [10]田威,裴志茹,韩女.基于CT扫描与3D打印技术的岩体三维重构及力学特性初探[J].岩土力学,2017,38(8):2 297-2 305.(TIAN Wei,PEI Zhiru,HAN Nv.A preliminary research on three-dimensional reconstruction and mechanical characteristics of rock mass based on CT scanning and 3D printing technology[J].Rock and Soil Mechanics,2017,38(8):2 297-2 305.(in Chinese))
    [11]DING Z,SUN J,ZHANG Y.FCM image segmentation algorithm based on color space and spatial information[J].International Journal of Computer and Communication Engineering,2013,2(1):48-51.
    [12]孟永东,蔡征龙,徐卫亚,等.边坡工程中监测数据场三维云图实时动态可视化方法[J].岩石力学与工程学报,2012,31(增2):3 482-3 490.(MENG Yongdong,CAI Zhenglong,XU Weiya,et al.A method for three-dimensional nephogram real-time dynamic visualization of safety monitoring data field in slope engineering[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(Supp.2):3 482-3 490.(in Chinese))
    [13]CHEVALIER Y,PAHR D,ALLMER H,et al.Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation[J].Journal of Biomechanics,2007,40(15):3 333-3 340.
    [14]GILBERT D,MORTAZAVI I,PILLER O,et al.Low dimensional modeling of Double T-junctions in water distribution networks using Kriging interpolation and Delaunay triangulation[J].Pacific Journal of Mathematics for Industry,2017,9(1):1-19.
    [15]钟江城,周宏伟,任伟光,等.基于CT图像灰度分布的含杂质煤体三值化方法[J].力学与实践,2018,40(2):140-147.(ZHONGJiangcheng,ZHOU Hongwei,REN Weiguang,et al.A three-valuesegmentation method of coal containing inclusion based on gray distribution of computed tomography image[J].Mechanics in Engineering,2018,40(2):140-147.(in Chinese))
    [16]万成,张肖宁,贺玲凤,等.基于真实细观尺度的沥青混合料三维重构算法[J].中南大学学报:自然科学版,2012,43(7):360-367.(WAN Cheng,ZHANG Xiaoning,HE Lingfeng,et al.3Dreconstruction algorithm of asphalt concrete based on real microscopic scale[J].Journal of Central South University:Science and Technology,2012,43(7):360-367.(in Chinese))
    [17]张连伟.井间地震CT技术及其在铁路岩溶勘察中的应用[博士学位论文][D].天津:天津大学,2014.(ZHANG Lianwei.The cross-well seismic CT technology and its application in railway karst survey[Ph.D.Thesis][D].Tianjin:Tianjin University,2014.(in Chinese))
    [18]中华人民共和国国家标准编写组.GB 50021-2001岩土工程勘察规范[S].北京:中国建筑工业出版社,2009.(The National Standards Compilation Group of People′s Republic of China.GB 50021-2001Code of investigation of geotechnical engineering[S].Beijing:China Architecture and Building Press,2009.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700