川西稻城岩体岩浆混合作用:矿物学特征的证据
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Magma mixing of the Daocheng batholith of western Sichuan:mineralogical evidences
  • 作者:张瑞刚 ; 和文言 ; 高雪 ; 李萌萌
  • 英文作者:ZHANG Ruigang;HE Wenyan;GAO Xue;LI Mengmeng;State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences;
  • 关键词:斜长石环带结构 ; 矿物化学 ; 岩浆混合 ; 稻城岩体 ; 川西
  • 英文关键词:zoned plagioclase;;mineral chemistry;;magma mixing;;Daocheng batholith;;western Sichuan
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:中国地质大学地质过程与矿产资源国家重点实验室;
  • 出版日期:2018-11-27 11:29
  • 出版单位:地学前缘
  • 年:2018
  • 期:v.25;No.134
  • 基金:国家重点基础研究发展计划“973”项目(2015CB452605,2015CB452606);; 高等学校学科创新引智计划(B07011);; 中国地质调查局地质调查项目(12120114013501);; 北京市优秀博士学位论文指导老师科研项目(20111141501)
  • 语种:中文;
  • 页:DXQY201806021
  • 页数:14
  • CN:06
  • ISSN:11-3370/P
  • 分类号:232-245
摘要
义敦岛弧形成于晚三叠世大规模俯冲造山作用过程中,位于松潘-甘孜地体和羌塘地体之间。稻城边部岩体是义敦岛弧带内规模巨大的复式花岗质岩体,由花岗岩、花岗闪长岩和钾长花岗岩组成。大量暗色镁铁质微粒包体发育于花岗闪长岩和钾长花岗岩中,且其与寄主岩石的接触界线明显。暗色镁铁质微粒包体具有细粒结构,发育石英眼构造、针状磷灰石和具环带结构的斜长石斑晶。文中以稻城岩体寄主岩石和暗色微粒包体中斜长石、黑云母和角闪石为研究对象,开展岩相学和电子探针原位化学成分分析,厘定了矿物形成的物理化学条件,探讨了岩浆混合作用过程及其形成的构造环境。研究表明:花岗闪长岩和暗色微粒包体中的斜长石主要为中长石,其核部呈浑圆状;前者核部的An值(21~50)显著高于幔部(21~34);后者则发育典型的突变环带,An值(29~44)呈波状变化且相对集中。暗色微粒包体与寄主花岗闪长岩中斜长石的An值部分重叠表明二者形成过程中存在含量的岩浆混合作用。斜长石环带中的An值随Al_2O_3、FeO、MgO和CaO含量的升高而升高,但随SiO_2、Na_2O和K_2O含量的升高而降低。寄主岩石和暗色微粒包体中角闪石富镁铁,阳离子特征为:CaB=1.56~1.75,Ti=0.08~0.13,属于钙质角闪石,具壳源特征,其结晶温度分别为697~725℃和680~705℃。花岗闪长岩中黑云母的Mg/(Mg+Fe~(2+))为0.37~0.45,显示出富Fe贫Ca、Mg,属于典型的岩浆成因黑云母。黑云母TiO_2含量变化范围为3.54%~4.62%,Al_2O_3含量变化范围为13.89%~15.15%;黑云母的氧化系数为0.08~0.11,Mg~#为0.39~0.46,MF值为0.36~0.44,单位分子中阳离子数Al~(Ⅵ)为0.03~0.11,以单位分子中Ti和Al阳离子数计算的黑云母结晶温度为584~624℃,表明其结晶温度较高,具壳幔混源特征。稻城岩体是以壳源为主的壳幔混源成因的I型花岗岩,暗色微粒包体是由镁铁质岩浆与长英质岩浆不同程度的混合作用形成的。
        The Yidun arc,located between the Songpan-Garze Terrane and Qiangtang Block of southwestern China,was formed in response to the Late Triassic large-scale subduction orogenic process.The Daocheng batholith consists of granite,granodiorite and K-feldspar granite.Abundant massive mafic microgranular enclaves(MMEs)developed mainly within the granodiorite and K-feldspar granite,forming clear contacts with the host granites.The MMEs are characterized by the quartz eye structure,quenched apatite,and plagioclases phenocrysts with obvious oscillatory zones.Based on the systematic petrographical,mineralogical and geochemical characteristics of plagioclase,hornblende and biotite from the host rock and MMEs of the Daocheng batholith of western Sichuan,we provide here not only the constraints on the physicochemical conditions for mineral and host rock formation,but also important insights into understanding the magma mixing process and structural setting.Our study shows that the plagioclases in the granodiorite and MMEs are all dominated by andesine with rounded or embayed cores.In the former,the An contents in the cores vary between 21 and 50,significantly higher than the An contents in the mantles(21-34),and in the latter,the An contents(29-44)are waved and concentrated in the mutation annulus.The overlap of An value between MMEs and host granite diorite indicates that magma mixing occurred during their formation.The An contents increase with the increase of Al_2O_3,FeO,MgO and CaO,but decrease with the increase of SiO_2,Na_2O and K_2O.The hornblendes from the host rock and MMEs are rich in Mg and Fe,with CaBand Ti values of 1.56-1.75 and 0.08-0.13,respectively.They both belong to the calcamphiboles,crystallized at 697-725 ℃ and 680-705 ℃,respectively.The biotites of granodiorite are enriched in iron,depleted in calcium and magnesium,which belongs to typical magmatic biotite.These biotites have Mg/(Mg+Fe~(2+))ratios of 0.37-0.45,TiO_2 contents of 3.54%-4.62%,oxidation coefficient of 0.08-0.11,Mg~# values of 0.39-0.46,MF values of 0.36-0.44,Al~(Ⅵ) value(molecular number of cations in one unit)of 0.03-0.11.The biotites from granodiorite display low CaO,MgO and Al~(Ⅵ) values and high FeO and TiO_2 contents,and were most likely crystallized between 584 ℃ and 624 ℃ as calculated by the cation numbers of Ti and Al.According to the tectonic setting discrimination diagrams and the geochemical features of biotites,we conclude that the Daocheng granodiorite belongs to the I-type granite-derived from the partial melting of the Late Triassic arc lower crust with minor mantle-derived materials,and the MMEs were generated by the mixing of mafic and felsic magma.
引文
[1]邓军,杨立强,王长明.三江特提斯复合造山与成矿作用研究进展[J].岩石学报,2011,27(9):2501-2509.
    [2]DENG J,YANG L Q,GAO B F,et al.Fluid evolution and metallogenic dynamics during tectonic regime transition:example from the Jiapigou gold belt in Northeast China[J].Resource Geology,2009,59(2):140-152.
    [3]DENG J,WANG Q F,LI G J,et al.Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region,southwestern China[J].Earth-Science Reviews,2014,138:268-299.
    [4]DENG J,WANG Q F,LI G J,et al.Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region,SW China[J].Gondwana Research,2014,26(2):419-437.
    [5]DENG J,WANG Q F,LI G J.Tectonic evolution,superimposed orogeny,and composite metallogenic system in China[J].Gondwana Research,2017,50:216-266.
    [6]GAO X,YANG L Q,MENG J Y,et al.Zircon U-Pb,molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf-O-S isotopic constraints on the genesis of Relin Cu-Mo deposit in Zhongdian,Northwest Yunnan,China[J].Ore Geology Reviews,2017,91:945-962.
    [7]GAO X,YANG L Q,OROVAN E A.The lithospheric architecture of two subterranes in the eastern Yidun Terrane,East Tethys:insights from Hf-Nd isotopic mapping[J].Gondwana Research,2018,62:127-143.
    [8]YANG L Q,DENG J,DILEK Y,et al.Melt source and evolution of I-type granitoids in the SE Tibetan Plateau:Late Cretaceous magmatism and mineralization driven by collision-induced transtensional tectonics[J].Lithos,2016,245:258-273.
    [9]YANG L Q,DENG J,GAO X,et al.Timing of formation and origin of the Tongchanggou porphyry-skarn deposit:implications for Late Cretaceous Mo-Cu metallogenesis in the southern Yidun Terrane,SE Tibetan Plateau[J].Ore Geology Reviews,2017,81:1015-1032.
    [10]YANG L Q,GAO X,SHU Q H.Multiple Mesozoic porphyry-skarn Cu(Mo-W)systems in Yidun Terrane,east Tethys:constraints from zircon U-Pb and molybdenite Re-Os geochronology[J].Ore Geology Reviews,2017,90:813-826.
    [11]YANG L Q,HE W Y,GAO X,et al.Mesozoic multiple magmatism and porphyry-skarn Cu-polymetallic systems of the Yidun Terrane,Eastern Tethys:implications for subduction-and transtension-related metallogeny[J].Gondwana Research,2018,62:144-162.
    [12]HE W Y,MO X X,YANG L Q,et al.Origin of the Eocene porphyries and mafic microgranular enclaves from the Beiya porphyry Au polymetallic deposit,western Yunnan,China:implications for magma mixing/mingling and mineralization[J].Gondwana Research,2016,40:230-248.
    [13]YANG Z,YANG L Q,HE W Y,et al.Control of magmatic oxidation state in intracontinental porphyry mineralization:a case from Cu(Mo-Au)deposits in the JinshajiangRed River metallogenic belt,SW China[J].Ore Geology Reviews,2017,90:827-846.
    [14]李文昌,余海军,尹光候.西南“三江”格咱岛弧斑岩成矿系统[J].岩石学报,2013,29(4):1129-1144.
    [15]HE D F,ZHU W G,ZHONG H,et al.Zircon U-Pb geochronology and elemental and Sr-Nd-Hf isotopic geochemistry of the Daocheng granitic pluton from the Yidun Arc,SW China[J].Journal of Asian Earth Sciences,2013,67/68:1-17.
    [16]PENG T P,ZHAO G C,FAN W M,et al.Zircon geochronology and Hf isotopes of Mesozoic intrusive rocks from the Yidun terrane,eastern Tibetan Plateau:petrogenesis and their bearings with Cu mineralization[J].Journal of Asian Earth Sciences,2014,80:18-33.
    [17]王楠,吴才来,秦海鹏,等.川西义敦岛弧稻城花岗岩体和海子山花岗岩体锆石U-Pb年代学、Hf同位素特征及地质意义[J].地质学报,2016,90(11):3227-3245.
    [18]侯增谦,曲晓明,周继荣,等.三江地区义敦岛弧碰撞造山过程:花岗岩记录[J].地质学报,2001,75(4):484-497.
    [19]REID A J,WILSON C J L,LIU S,et al.Mesozoic plutons of the Yidun Arc,SW China:U/Pb geochronology and Hf isotopic signature[J].Ore Geology Reviews,2007,31:88-106.
    [20]曹殿华,王安建,李文昌,等.普朗斑岩铜矿岩浆混合作用岩石学及元素地球化学证据[J].岩石学报,2009,83(2):166-175.
    [21]王鹏,董国臣,董美玲,等.义敦岛弧措交玛岩体岩浆混合成因:镁铁质微粒包体的证据[J].岩石学报,2017,33(8):2535-2547.
    [22]AKIHIKO T,ISOJI M,GENJI S,et al.Short time scale of magma mixing processes prior to the eruption of shinmoedake volcano,Kirishima volcanic group,Japan[J].Bulletin of Volcanology,2013,75(10):731-750.
    [23]FIONA V F,NORMAN J P,TRACY R,et al.Magmatic evolution and magma mixing of Quaternary adakites at Solander and Little Solander Island,New Zealand[J].Journal of Petrology,2013,54(4):703-744.
    [24]YANG L Q,DENG J,QIU K F,et al.Magma mixing and crust-mantle interaction in the Triassic onzogranites of Bikou Terrane,central China:constraints from petrology,geochemistry,and zircon U-Pb-Hf isotopic systematics[J].Ore Geology Reviews,2015,98:320-341.
    [25]YANG L Q,DENG J,DILEK Y,et al.Structure,geochronology,and petrogenesis of the Late Triassic Puziba Granitoid Dikes in the Mianlue Suture Zone,Qinling Orogen,China[J].Geological Society of America Bulletin,2015,127:1831-1854.
    [26]HATTORI K H,KEITH J D.Contribution of mafic melt to porphyry copper mineralization:evidence from Mount Pinatubo,Philipines,and Bingham Canyon,Utah,USA[J].Mineralium Deposita,2001,36(8):799-806.
    [27]HOU Z Q,ZHANG H R,PAN X F,et al.Porphyry(CuMo-Au)deposits related to melting of thickened mafic lower crust:examples from the eastern Tethyan metallogenic domain[J].Ore Geology Reviews,2011,39(1/2):21-45.
    [28]HE W Y,YANG L Q,BRUGGER J,et al.Hydrothermal evolution and ore genesis of the Beiyagiant Au polymetallic deposit,western Yunnan,China:evidence from fluid inclusions and H-O-S-Pb isotopes[J].Ore Geology Reviews,2017,90:847-862.
    [29]郭耀宇,和文言,李在春,等.西秦岭格尔括合花岗闪长斑岩岩石成因:黑云母矿物学特征约束[J].岩石学报,2015,31(11):3380-90.
    [30]莫宣学.岩浆与岩浆岩:地球深部探针与演化记录[J].自然杂志,2011,33(5):255-261.
    [31]HE W Y,MO X X,HE Z H,et al.The geology and mineralogy of the Beiya Skarn gold deposit in Yunnan,Southwest China[J].Economic Geology,2015,110(6):1625-1641.
    [32]邓军,王庆飞,李龚健.复合造山和复合成矿系统:三江特提斯例析[J].岩石学报,2016,32(8):2225-2247.
    [33]杨立强,邓军,赵凯,等.哀牢山造山带金矿成矿时序及其动力学背景探讨[J].岩石学报,2011,15(9):2519-2532.
    [34]杨立强,高雪,和文言.义敦岛弧晚白垩世斑岩成矿系统[J].岩石学报,2015,31(11):3155-3170.
    [35]DENG J,WANG Q F,LI G J,et al.Geology and genesis of the giant Beiyaporphyry-skarn gold deposit,northwestern Yangtze Block China[J].Ore Geology Reviews,2015,70:457-485.
    [36]DENG J,WANG C M,BAGAS L,et al.Cretaceous-Cenozoic tectonic history of the Jiaojia fault and gold mineralization in the Jiaodong peninsula,China:constraints from zircon U-Pb,illite K-Ar,and apatite fission track thermochronometry[J].Mineralium Deposita,2015,50(8):987-1006.
    [37]DENG J,WANG Q F.Gold mineralization in China:metallogenic provinces,deposit types and tectonic framework[J].Gondwana Research,2016,36:219-274.
    [38]YANG L Q,DENG J,GOLDFARB R J,et al.40 Ar/39 Ar geochronological constraints on the formation of the Dayingezhuang gold deposit:new implications for timing and duration of hydrothermal activity in the Jiaodong gold province,China[J].Gonwana Research,2014,25:1469-1483.
    [39]GAO X,YANG L Q,ZHANG R G,et al.Nature and origin of Mesozoic granitoids and associated mineralization in the Sanjiang Tethys Orogeny,SW China:the Xiuwacu complex example[J].International Geology Reviews,2018:1-26.DOI:10.1080/00206814.2018.1464405.
    [40]HE W Y,XIE S X,LIU X D,et al.Geochronology and geochemistry of the Donglufang porphyry-skarn Mo-Cu deposit in the southern Yidun Terrane and their geological significances[J].Geoscience Frontiers,2018,9:1433-1450.
    [41]侯增谦,杨岳清,曲晓明,等.三江地区义敦岛弧造山带演化和成矿系统[J].地质学报,2004,78(1):109-120.
    [42]FORSTER M D.Interpretation of the composition of trioctahedral micas[J].Geological Survey Professional Paper,1960,354:11-49.
    [43]王楠,吴才来,秦海鹏.川西义敦岛弧中生代典型花岗岩体矿物学、地球化学特征及岩浆来源探讨[J].地质论评,2017,63(4):981-1000.
    [44]VANCE J Z.Zoning in igneous plagioclase:patchy zoning[J].Geology,1962,73:636-651.
    [45]HIBBARD M J.The magma mixing origin of mantled feldspars[J].Contributions to Mineralogy and Petrology,1981,76(2):158-170.
    [46]郑巧荣.由电子探针分析计算Fe3+和Fe2+[J].矿物学报,1983,3(1):55-62.
    [47]KUMAR S,PATHAK M.Mineralogy and geochemistry of biotites from Proterozoic granitoids of western Arunachal Himalaya:evidence of bimodal granitogeny and tectonic affinity[J].Journal of the Geological Society of India,2010,75(5):715-730.
    [48]MICHALE J F,CINTY A L,KEITH D P.Mafic-felsic magma mixing limited by reactive prcesses:a case study of biotite-rich on maficenclaves[J].Earth and Planetray Science Letters,2014,393:49-59.
    [49]ABDEL-RAHMAN A F M.Nature of biotites from alkaline,calcalkaline,and peraluminous magmas[J].Journal of Petrology,1994,35(2):525-541.
    [50]SCHUMACHER J C.Empirical ferric iron corrections:necessity,assumptions,and effects on selected geothermobarometers[J].Mineralogical Magazine,1991,55:3-18.
    [51]LEAKE B E,WOOLEY A R,ARPPS C E S,et al.Nomenclature of amphiboles:report of the Subcommittee on Amphiboles of the International Mineralogical Association,commission on new minerals and mineral names[J].Canadian Mineralogist,1997,35:219-246.
    [52]HE X F,SANTOSH M,TSUNOAGE T,et al.Early to late Neoproterozoic magmatism and magma mixing-mingling in Sri Lanka:implications for convergent margin processes during Gondwana assembly[J].Gondwana Research,2016,32:151-180.
    [53]MA X X,MERRT J G,XU Z Q,et al.Evidence of magma mixing identified in the Early Eocene Caina pluton from the Gangdese Batholith,southern Tibet[J].Lithos,2017,278/279/280/281:126-139.
    [54]颜丽丽,贺振宇,刘磊,等.浙江雁荡山火山-侵入岩的岩浆混合作用:暗色包体中长石环带的证据[J].地质通报,2015,34(2/3):466-473.
    [55]陆天宇,贺振宇,张泽明,等.西藏冈底斯后碰撞花岗岩的岩浆混合作用:显微结构证据[J].岩石学报,2016,32(12)3613-3623.
    [56]ANNA P,JURGEN K.Plagioclase transfer from a host granodiorite to mafic microgranular enclaves:diverse records of magma mixing[J].Mineralogy and Petrology,2014,108:681-694.
    [57]VERNON R H.Microgranitoid enclaves in granites globules of hybrid magma quenched in a plutonic environment[J].Nature,1984,309:438-439.
    [58]GERAPDO C,MICHALE M,MICHALE J B,et al.Complex magma mixing,mingling,and withdrawal associated with an intra-Plinian ignimbrite eruption at a large silicic caldera volcano:Los Humeros of central Mexico[J].Geological Society of America Bulletin,2012,124(11):1793-1809.
    [59]CASTRO A.Plagioclase morphologies in assimilation experiments:implications for disequilibrium melting in the generation of granodiorite rocks[J].Mineralogy and Petrology,2001,71:255-276.
    [60]HUMPHREYS M C S.Chemical evolution of intercumulus liquid,as recorded in plagioclase overgrowth rims from the Skaergaard Intrusion[J].Journal of Petrology,2009,50:127-145.
    [61]BARBARIN B.Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith,California:nature,origin,and relations with the hosts[J].Lithos,2005,80(1/2/3/4):155-177.
    [62]HAMMARSTROM J M,ZEN E A N.Aluminum in hornblende:an empirical igneous geobarometer[J].American Mineralogist,1986,71(11/12):1297-1313.
    [63]RIDOLFI F,RENZULLI A,PUERINI M.Stability and chemical equilibrium of amphibole in cale-alkaline magmas:an overview,new thermobarometric formulations and application to subductionrelated volcanoes[J].Contributions to Mineralogy and Petrology,2010,160(1):45-66.
    [64]郭娜欣,王登红,赵正,等.九龙脑岩体矿物学研究及对岩浆演化和成矿作用的指示意义[J].地学前缘,2017,24(5):76-92.
    [65]唐攀,唐菊兴,郑文宝,等.西藏拉抗俄斑岩铜钼矿床黑云母矿物化学特征[J].地学前缘,2017,24(5):265-282.
    [66]姜常义,安三元.论火成岩中钙质角闪石的化学组成特征及其岩石学意义[J].矿物岩石,1984(3):1-9.
    [67]SCHMIDT M W.Amphibole composition in tonalite as a function of pressure:an experimental calibration of the Alin-hornblende barometer[J].Contributions to Mineralogy and Petrology,1992,110(2/3):304-310.
    [68]WONES D R,EUGSTER H P.Stability of biotite:experiment,theory,and application[J].American Mineralogist,1965,50:1228-1272.
    [69]潘彦宁,董国臣,李雪峰,等.滇西北斑岩铜矿带中黑云母矿物化学及其成岩成矿指示意义[J].地学前缘,2017,24(6):194-207.
    [70]周作侠.侵入岩的镁铁云母化学成分特征及其地质意义[J].岩石学报,1988,4(3):63-73.
    [71]徐克勤,涂光炽.花岗岩地质和成矿关系[M].南京:江苏科学技术出版社,1986:1-645.
    [72]谢应雯,张玉泉.横断山不同成因类型花岗岩类岩石中黑云母的标型特征[J].矿物学报,1987,7(3):245-254.
    [73]NACHIT H,IBHI A,ABIAE H.Discrimination between primary magmatic biotites,reequilibrated biotites and neoformed biotites[J].Comptes Rendus Geoscience,2005,337(16):1415-1420.
    [74]HENRY D J,GUIDOTTI C V,THOMSON J A.The Tisaturation surface for low-to-medium pressure metapelitic biotites:implications for geothermometry and Ti-substitution mechanisms[J].American Mineralogist,2005,90(2/3):316-328.
    [75]UCHIDA E,ENDO S,MAKINO M.Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits[J].Resource Geology,2007,57(1):47-56.
    [76]DENG J,WANG Q F,LI G J,et al.Structural control and genesis of the Oligocene Zhenyuan orogenic gold deposit,SW China[J].Ore Geology Reviews,2015,65:42-54.
    [77]YANG L Q,DENG J,GUO R P,et al.World-class Xincheng gold deposit:an example from the giant Jiaodong gold province[J].Geoscience Frontiers,2016,7(3):419-430.
    [78]YANG L Q,DENG J,WANG Z L,et al.Thermochronologic constraints on evolution of the Linglong Metamorphic Core Complex and implications for gold mineralization:a case study from the Xiadian gold deposit,Jiaodong Peninsula,eastern China[J].Ore Geology Reviews,2016,72:165-178.
    [79]TEPLEY F J,DAVIDSON J P,TILLING R I,et al.Magma mixing,recharge and eruption histories recorded in plagioclase phenocrysts from El Chichón Volcano,Mexico[J].Contributions to Mineralogy and Petrology,2000,41:1397-1411.
    [80]SLABY E,MARTIN H.Mafic and felsic magma interaction in granites:The Hercynian Karkonosze pluton(Sudetes,Bohemian Massif)[J].Journal of Petrology,2008,49(2):353-391.
    [81]PIETRANIK A,KOEPKE J,PUZIEWICZ J.Crystallization and resorption in plutonic plagioclase:implications on the evolution of granodiorite magma(Gsiniec granodiorite,Strzelin Crystalline Massif,SW Poland)[J].Lithos,2006,86:260-280.
    [82]BOWEN N L.The evolution of igneous rocks[M].New York:Dover Publications,1928.
    [83]MAALOE S,WYLLIIE P J.Water content of a granite magma deduced from the sequence of crystallization determined experimentally with water-undersaturated conditions[J].Contributions to Mineralogy and Petrology,1975,52(3):175-191.
    [84]FEELEY T C,SHARP Z D.Chemical and hydrogen isotope evidence for in situ dehydrogenation of biotitein silicic magma chambers[J].Geology,1996,24(11):1021-1024.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700