水氮耦合对设施土壤温室气体排放的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Interactive effect of irrigation and nitrogen fertilization on greenhouse gas emissions from greenhouse soil
  • 作者:杜世宇 ; 薛飞 ; 吴汉卿 ; 邹洪涛 ; 张玉玲 ; 张玉龙 ; 虞娜
  • 英文作者:DU Shi-yu;XUE Fei;WU Han-qing;ZOU Hong-tao;ZHANG Yu-ling;ZHANG Yu-long;YU Na;College of Land and Environment, Shenyang Agricultural University/Northeast Key Laboratory of Conservation and Improvement of Cultivated Land, Ministry of Agriculture and Rural Affairs/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources;
  • 关键词:水氮耦合 ; 设施土壤 ; 温室气体 ; 全球增温潜势
  • 英文关键词:interactive effect of irrigation and nitrogen application;;greenhouse soil;;greenhouse gas emissions;;global warming potential
  • 中文刊名:NHBH
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:沈阳农业大学土地与环境学院/农业农村部东北耕地保育重点实验室/土肥资源高效利用国家工程实验室;
  • 出版日期:2019-02-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:v.38;No.282
  • 基金:国家自然科学基金项目(41401322);; 国家重点研发计划项目(2016YFD0300807);; 国家科技支撑计划项目(2015BAD23B01);; 农业农村部东北耕地保育重点实验室开放基金项目(2015NYBKFT-01)~~
  • 语种:中文;
  • 页:NHBH201902028
  • 页数:9
  • CN:02
  • ISSN:12-1347/S
  • 分类号:234-242
摘要
为探究水氮耦合对设施土壤温室气体排放的影响,基于连续5年的设施番茄水氮调控定位试验,比较分析了水氮耦合对土壤N_2O、CO_2和CH_4排放通量和累积排放量的影响,并估算了温室气体的全球增温潜势(GWP)和温室气体排放强度(GHGI)的差异。田间小区试验设置不同灌水下限(W1:25 kPa、W2:35 kPa、W3:45 kPa)和施氮量(N1:75 kg N·hm~(-2)、N_2:300 kg N·hm~(-2)、N3:525kg N·hm~(-2))组合共9个处理。结果表明:设施土壤N_2O和CO_2排放通量受灌水施肥时期的影响,施肥后N_2O排放通量呈增加趋势,高灌水量(低灌水下限25 kPa)促进N_2O和CO_2排放。CH_4的排放通量表现为中等和强变异的特点。除水氮交互对CO_2累积排放总量和施氮量对CH_4累积排放总量影响不显著外,灌水下限、施氮量和水氮交互作用对N_2O、CO_2、CH_4累积排放总量、GWP、GHGI和番茄产量的影响显著或极显著。随氮肥用量的增加,N_2O累积排放总量增加。N_2O和CO_2累积排放总量与GWP之间均达到极显著正相关,且各处理N_2O对GWP平均贡献率为5.25%,CO_2为94.59%。适当减少氮肥用量和增加灌水下限能够有效地降低温室气体排放和减缓全球变暖。W2N1处理是本研究中减缓温室气体排放并提高番茄产量的最佳水氮管理措施。
        This study conducted an experiment on greenhouse grown tomatoes to explore the interactive effect of irrigation and nitrogen application on the level of greenhouse gas emissions released from greenhouse soil, and to determine the impact of this effect on emission fluxand total cumulative emission of greenhouse gases(N_2 O, CO_2 and CH_4). Furthermore, this study examined differences in global warming po?tential(GWP)and greenhouse gas intensity(GHGI)between the gases over a five-year experimental period. Nine treatments, comprised ofa combination of three irrigation lower limits(W1:25 kPa, W2:35 kPa, W3:45 kPa)and three N application rates(N1:75 kg N·hm~(-2), N_2:300 kg N·hm~(-2), N3:525 kg N·hm~(-2)), were utilized in the experiment. Results showed that the effects of irrigation and fertilization time in?fluenced the emission fluxes of N_2 O and CO_2. N_2 O emission flux increased after fertilization, and the high irrigation rate(irrigation lower lim?it 25 kPa)raised the emission fluxes of both N_2 O and CO_2. The variability coefficients of CH_4 emission flux were in the middle to strongrange. Except for the interactive effect of irrigation and nitrogen on the total cumulative emission of CO_2, and the effect of nitrogen fertiliza?tion on the total cumulative emission of CH_4, irrigation and nitrogen fertilizer rates and their interactions had a very significant effect on to?mato yield, GWP, GHGI, and the total cumulative emission of N_2 O, CO_2, and CH_4. Additionally, as nitrogen fertilizer rates increased, the to?tal cumulative emission of N_2 O also increased. The total cumulative emission of N_2 O and CO_2 had a significant, positive correlation withGWP; the average contribution rate of N_2 O to GWP was 5.25% compared with a GWP of 94.59% for CO_2. Ultimately, reducing the nitrogen fertilizer rate and increasing the irrigation lower limit could effectively reduce greenhouse gas emissions and ameliorate global warming. Inthis study, W2 N1 treatment provided the optimal regulation of irrigation and nitrogen fertilization needed to increase tomato yield and mitigate greenhouse gas emissions.
引文
[1]王敬国,林杉,李保国.氮循环与中国农业氮管理[J].中国农业科学,2016,49(3):503-517.WANG Jing-guo,LIN Shan,LI Bao-guo.Nitrogen cycling and management strategies in Chinese agriculture[J].Agricultural Science in China,2016,49(3):503-517.
    [2]巨晓棠,谷保静.我国农田氮肥施用现状、问题及趋势[J].植物营养与肥料学报,2014,20(4):783-795.JU Xiao-tang,GU Bao-jing.Status-quo,problem and trend of nitrogen fertilization in China[J].Journal of Plant Nutrition and Fertilizer,2014,20(4):783-795.
    [3]Benjamin trost,Annette prochnow,Katrin drastig,et al.Irrigation,soil organic carbon and N2O emissions:A review[J].Agronomy for Sustainable Development,2013,33(4):733-749.
    [4]Sánchez-Martín L,Arce A,Benito A,et al.Influence of drip and furrow irrigation systems on nitrogen oxide emissions from a horticultural crop[J].Soil Biology and Biochemistry,2008,40(7):1698-1706.
    [5]Ravishankara A R,Daniel J S,Portmann R W.Nitrous oxide(N2O):The dominant ozone-depleting substance emitted in the 21st Century[J].Science,2009,326:123-125.
    [6]Han B,Ye X H,Li W,et al.The effects of different irrigation regimes on nitrous oxide emissions and influencing factors in greenhouse tomato fields[J].Journal of Soils and Sediments,2017,17:2457-2468.
    [7]成臣,杨秀霞,汪建军,等.秸秆还田条件下灌溉方式对双季稻产量及农田温室气体排放的影响[J].农业环境科学学报,2018,37(1):186-195.CHENG Chen,YANG Xiu-xia,WANG Jian-jun,et al.Effect of different irrigation methods on rice yield and greenhouse gas emissions under crop residue in-corporation in double rice-cropping systems[J].Journal of Agro-Environment Science,2018,37(1):186-195.
    [8]Zornoza R,Rosales R M,Acosta J A,et al.Efficient irrigation management can contribute to reduce soil CO2 emissions in agriculture[J].Geoderma,2016,263:70-77.
    [9]易琼,黄旭,张木,等.氮肥施用水平及种类对生菜产量及菜地N2O排放的影响[J].农业环境科学学报,2016,35(10):2019-2025.YI Qiong,HUANG Xu,ZHANG Mu,et al.Effects of nitrogen application rate and sources on yield of lettuce and nitrous oxide emission in vegetable soil[J].Journal of Agro-Environment Science,2016,35(10):2019-2025.
    [10]Guillermo Guardia,Max T Cangani,Alberto sanz-cobena.Management of pig manure to mitigate NO and yield-scaled N2O emissions in an irrigated Mediterranean crop[J].Agriculture,Ecosystems and Environment,2016,238:55-56.
    [11]Zhang H H,He P J,Shao L M.N2O emissions from municipal solid waste landfills with selected infertile cover soils and leachate subsurface irrigation[J].Environmental Pollution,2008,156(3):959-965.
    [12]Harty M A,Forrestal P J,Watson C J.Reducing nitrous oxide emissions by changing N fertiliser use from calcium ammonium nitrate(CAN)to urea based formulations[J].The Science of the Total Environment,2016,563-564:576-586.
    [13]李长生,肖向明,S Frolking,等.中国农田的温室气体排放[J].第四纪研究,2003,23(5):493-503.LI Chang-sheng,XIAO Xiang-ming,S Frolking,et al.Greenhouse gas emissions from Chinese farms[J].Quaternary Sciences,2003,23(5):493-503.
    [14]Dhadli H S,Brar B S.Effect of long-term differential application of inorganic fertilizers and manure on soil CO2 emissions[J].Plant Soil and Environment,2016,62:195-201.
    [15]Yang G,Chen H,Wu N,et al.Effects of soil warming,rainfall reduction and water table level on CH4 emissions from the Zoige peatland in China[J].Soil Biology&Biochemistry,2014,78:83-89.
    [16]Jia X X,Shao M A,Wei X R.Soil CO2 efflux in response to the addition of water and fertilizer in temperate semiarid grassland in northern China[J].Plant and Soil,2013,373:125-41.
    [17]Tausz M,Norton R M,Tausz-Posch S,et al.Can additional N fertiliser ameliorate the elevated CO2 induced depression in grain and tissue N concentrations of wheat on a high soil N background?[J].Journal of Agronomy and Crop Science,2017,203:574-583.
    [18]杜娅丹,张倩,崔冰晶,等.加气灌溉水氮互作对温室芹菜地N2O排放的影响[J].农业工程学报,2017,33(16):127-134.DU Ya-dan,ZHANG Qian,CUI Bing-jing,et al.Effects of water and nitrogen coupling on soil N2O emission characteristics of greenhouse celery field under aerated irrigation[J].Transactions of the Chinese Society of Agricultural Engineering,2017,33(16):127-134.
    [19]Ku HH,Hayashi K,Agbisit R,et al.Evaluation of fertilizer and water management effect on rice performance and greenhouse gas intensity in different seasonal weather of tropical climate[J].Science of the Total Environment,2017,601-602:1254-1262.
    [20]IPCC.Climate change 2013:The physical science basis.contribution of Working GroupⅠto the fifth assessment report of the intergovernmental panel on climate change[R].Cambridge,United Kingdom and New York,USA:Cambridge University Press,2013.
    [21]Mcdaniel M D,Simpson R R,Malone B P,et al.Quantifying and pre-dicting spatio-temporal variability of soil CH4 and N2O fluxes from aseemingly homogeneous Australian agricultural field[J].Agriculture Ecosystems&Environment,2017,240:182-193.
    [22]Trost B,Prochnow A,Baumecker M,et al.Effects of nitrogen fertilization and irrigation on N2O emissions from a sandy soil in Germany[J].Archives of Agronomy and Soil Science,2015,61:569-580.
    [23]Wu X R,Zhang A.Comparison of three models for simulating N2Oemissions from paddy fields under water-saving irrigation[J].Atmospheric Environment,2014,98:500-509.
    [24]李海防,夏汉平,熊燕梅,等.土壤温室气体产生与排放影响因素研究进展[J].生态环境,2007,16(6):1781-1788.LI Hai-fang,XIA Han-ping,XIONG Yan-mei,et al.Research progress on influence factors of soil greenhouse gas production and emission[J].Ecology and Environment,2007,16(6):1781-1788.
    [25]Ghosh U,Thapa R,Desutter T,et al.Saline-Sodic soils:Potential sources of nitrous oxide and carbon dioxide emissions?[J].Pedosphere,2017,27:65-75.
    [26]刘祥超,王凤新,顾小小.水、热对土壤CO2排放影响的研究[J].中国农学通报,2012,28(2):290-295.LIU Xiang-chao,WANG Feng-xin,GU Xiao-xiao.Study on the influence of water and temperature on soil CO2 emission[J].Chinese Agricultural Science Bulletin,2012,28(2):290-295.
    [27]Tausz M,Norton R M,Tausz-Posch S,et al.Can additional N fertiliser ameliorate the elevated CO2-induced depression in grain and tissue N concentrations of wheat on a high soil N background?[J].Journal of Agronomy and Crop Science,2017,203:574-583.
    [28]Iqbal J,Hu R G,Lin S,et al.CO2 emission in a subtropical red paddy soil(Ultisol)as affected by straw and N-fertilizer applications:Acase study in Southern China[J].Agriculture Ecosystems&Environment,2009,131:292-302.
    [29]张玉铭,胡春胜,张佳宝,等.农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展[J].中国生态农业学报,2011,19(4):966-975.ZHANG Yu-ming,HU Chun-sheng,ZHANG Jia-bao,et al.Research advances on source/sink intensities and greenhouse effects of CO2,CH4 and N2O in agricultural soils[J].Chinese Journal of Eco-Agriculture,2011,19(4):966-975.
    [30]Ana L S V,Mauricio R C,Brigitte J F,et al.Greenhouse gas emission responses to sugarcane straw removal[J].Biomass and Bioenergy,2018,113:15-21.
    [31]李成芳,寇志奎,张枝盛,等.秸秆还田对免耕稻田温室气体排放及土壤有机碳固定的影响[J].农业环境科学学报,2011,30(11):2362-2367.LI Cheng-fang,KOU Zhi-kui,ZHANG Zhi-sheng,et al.Effects of rape residue mulch on greenhouse gas emissions and carbon sequestration from no-tillage rice fields[J].Journal of Agro-Environment Science,2011,30(11):2362-2367.
    [32]刘志伟,朱孟涛,郭文杰,等.秸秆直接还田与炭化还田下土壤有机碳稳定性和温室气体排放潜力的对比研究[J].土壤通报,2017,48(6):1371-1378.LIU Zhi-wei,ZHU Meng-tao,GUO Wen-jie,et al.Comparison of soil organic carbon stability and greenhouse gas emissions potential under straw or straw-derived biochar amendment[J].Chinese Journal of Soil Science,2017,48(6):1371-1378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700