纳米铜微波法的制备及其粒度影响因素的探究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Nano-Cu by Microwave Irradiation Method and Influence Factors Researches on Particle Size
  • 作者:李宗儒 ; 薛永强 ; 崔子祥
  • 英文作者:LI Zongru;XUE Yongqiang;CUI Zixiang;Department of Applied Chemistry,Taiyuan University of Technology;
  • 关键词:纳米铜 ; 微波法 ; 粒度可控 ; 粒度依赖性
  • 英文关键词:Nano-Cu;;microwave irradiation method;;size control;;size dependence
  • 中文刊名:CLKX
  • 英文刊名:Journal of Materials Science and Engineering
  • 机构:太原理工大学化学化工学院;
  • 出版日期:2018-06-20
  • 出版单位:材料科学与工程学报
  • 年:2018
  • 期:v.36;No.173
  • 基金:国家自然科学基金资助项目(21373147,21573157)
  • 语种:中文;
  • 页:CLKX201803014
  • 页数:5
  • CN:03
  • ISSN:33-1307/T
  • 分类号:58+83-86
摘要
在MCR-3型微波反应器中以CuCl_2·2H_2O为原料,乙二醇为溶剂、还原剂以及分散剂,在碱性条件下,制备了不同粒径的纳米铜粉。考察了CuCl_2的浓度C(CuCl_2)、预置温度T、摩尔比m=n(NaOH)/n(CuCl_2)以及反应时间t对纳米铜粉粒度的影响,并对其影响机理进行了分析。结果表明,采用微波法,通过改变实验条件可以制备出粒度可控的纳米铜,且分散度好,分布均匀,结晶度高,球形性良好;预置温度是影响粒径的主要因素,低于185℃时,粒度依赖性不明显;而当高于185℃时,温度越高,粒径越大。
        Nano-Cu powder with various particle sizes were prepared in a MCR-3 microwave reactor under alkaline condition,using CuCl_2·2 H_2O as copper resource,ethylene glycol as solvent,reducing agent and dispersion agent as well.Influences of CuCl_2 concentration,reaction temperature and time,and molar ratio m=n(NaOH)/n(CuCl_2)on the particle size of the nano-Cu powder were investigated.Then,the influence mechanisms were explored.Experimental results indicate that the microwave irradiation method can be used to prepare size-controllable nano-Cu powder with high dispersion,uniform distribution,high crystallinity and ideal roundness.Preset temperature is the main factor to determine the Cu particle size.Temperature dependence of particle size becomes obvious only if the preset temperature is higher than 185℃,and the higher the reaction temperature,the larger the particle diameter will become.
引文
[1]Rao R S,Walters A B,Vannice M A.Influence of Crystallite Size on Acetone Hydrogenation over Copper Catalysts[J].Journal of Physical Chemistry B,2005,109(6):2086~2092.
    [2]曹敬煜,李文善,黄德欢.纳米铜在润滑油基础油中的制备及性能表征[J].材料科学与工程学报,2010,29(1):97~101.
    [3]Isomura Y,Narushima T,Kawasaki H,Yonezawa T,Obora Y.Surfactant-free Single-nano-sized Colloidal Cu Nanoparticles for Use as an Active Catalyst in Ullmann-coupling Reaction[J].ChemInform,2012,48(32):3784~3786.
    [4]Gokhale A A,Dumesic J A,Mavrikakis M.On the Mechanism of Low-temperature Water Gas Shift Reaction on Copper[J].Journal of the American Chemical Society,2008,130(4):1402~1414.
    [5]Kudo A,Niishiro R,Iwase A,Kato H.Effects of doping of Metal Cationson Morphology,Activity,and Visible Light Response of Photocatalysts[J].Chemical Physics,2007,339(1~3):104~110.
    [6]Zhu J,Zch M.Nanostructured Materials for Photocatalytic Hydrogen Production[J].Current Opinion in Colloid&Interface Science,2011,14(4):260~269.
    [7]Qiu R,Cha H G,Hui B N,et al.Preparation of Dendritic Copper Nanostructures and Their Characterization for Electro Reduction[J].Journal of Physical Chemistry C,2009,113(36):15891~15896.
    [8]Lee Y,Choi J R,Lee K J,Stott N E,Kim D.Large-scale Synthesis of Copper Nanoparticles by Chemically Controlled Reduction for Applications of Inkjet-printed Electronics[J].Nanotechnology,2008,19(41):4235~4237.
    [9]Perelaer J,Smith P J,Mager D,et al.Printed Electronics:the Challenges Involved in Printing Devices,Interconnects,and Contacts Based on Inorganic Materials[J].Journal of Materials Chemistry.2010,20(39):8446~8453.
    [10]王艳萍,苏晓磊,屈银虎,等.铜电子浆料的制备及性能[J].材料科学与工程学报,2015,33(6):908~911.
    [11]边慧,苏晓磊,李冰,等.铜粉电子浆料的老化性能[J].材料科学与工程学报,2016,34(4):619~623.
    [12]Tanabe K.Optical Radiation Efficiencies of Metal Nanoparticles for Optoelectronic Applications[J].Materials Letters,2007,61(s 23-24):4573~4575.
    [13]Ramyadevi J,Jeyasubramanian K,Marikani A,Rajakumar G,Rahuman A.Synthesis and Antimicrobial Activity of Copper Nanoparticles[J].Materials Letters,2012,71(04):114~116.
    [14]徐丽叶,匡达,邓意达.纳米铜的制备及应用研究[J].材料导报:纳米与新材料专辑,2013,27(s1):37~41.
    [15]Ajayan P M,Talapatra S,Vajtai R,et al.Carbon Nanotubes Filter[P].US20060027499.2006.02.09.
    [16]高杨,栾春晖,薛永强.改进的溶胶-凝胶法制备超细铜粉[J].太原理工大学学报,2000,31(3):271~273.
    [17]Cason J P,Miller M E,Thompson J B,Roberts C B.Solvent Effects on Copper Nanoparticle Growth Behavior in AOT Reverse Micelle Systems[J].Journal of Physical Chemistry B,2001,105(12):2297~2302.
    [18]Deng D,Jin Y,Cheng Y,Qi T,Xiao F.Copper Nanoparticles:Aqueous phase Synthesis and Conductive Films Fabrication at Low sSintering Temperature[J].Applied Materials&Interfaces,2013,5(9):3839~3846.
    [19]Wu S H,Chen D H.Synthesis of High-concentration Cu Nanoparticles in Aqueous CTAB Solutions[J].Journal of Colloid&Interface Science,2004,273(1):165~169.
    [20]黄钧声,任山,谢成文.化学还原法制备纳米铜粉的研究[J].材料科学与工程学报,2003,21(1):57~59.
    [21]黄钧声,任山.纳米铜粉研制进展[J].材料科学与工程学报,2001,19(2):76~79.
    [22]陈磊,陈建敏,周惠娣,等.纳米铜胶体的合成及表征[J].材料科学与工程学报,2005,23(4):598~600.
    [23]Zhu H,Zhang C,Yin Y.Novel Synthesis of Copper Nanoparticles:Influence of the Synthesis Conditions on the Particle Size[J].Nanotechnology,2005,16(12):730~744.
    [24]Kawasaki H,Kosaka Y,Myoujin Y,et al.Microwave-assisted Polyol Synthesis of Copper Nanocrystals without Using Additional Protective Agents[J].Chemical Communications,2011,47(27):7740~7742.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700