碳纳米管材料低频电磁参数及吸波产热特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Low frequency electromagnetic parameters and absorbing heat generation properties of carbon nanotubes
  • 作者:李哲 ; 王文龙 ; 张梦 ; 孙静 ; 毛岩鹏 ; 赵希强 ; 宋占龙
  • 英文作者:LI Zhe;WANG Wenlong;ZHANG Meng;SUN Jing;MAO Yanpeng;ZHAO Xiqiang;SONG Zhanlong;National Engineering Laboratory of Coal-fired Pollutants Emission Reduction, Shandong University;
  • 关键词:纳米材料 ; 吸收 ; 复介电常数 ; 复磁导率 ; 传热 ; 热效应
  • 英文关键词:nanomaterials;;absorption;;complex permittivity;;complex permeability;;heat transfer;;heat effect
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:山东大学燃煤污染物减排国家工程实验室;
  • 出版日期:2019-03-15
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金项目(51506116,51576118);; 山东省自然科学基金重大基础研究项目(ZR2017ZC0714);; 山东大学青年学者未来计划项目(2018 WLJH75,2016WLJH37)
  • 语种:中文;
  • 页:HGSZ2019S1004
  • 页数:7
  • CN:S1
  • ISSN:11-1946/TQ
  • 分类号:34-40
摘要
微波的热利用技术促进了吸波材料的应用研究。碳纳米管(CNTs)是近年来新兴的强吸波材料,具有密度小、比表面积大、量子尺寸效应的特点。对碳纳米管吸波材料的复介电常数和复磁导率随碳纳米管含量的变化进行探究。在此基础上,以石蜡油为蓄热介质探究了碳纳米管材料在微波辐照下吸波产热特性。同轴传输法适用于小型样品的测量,具有误差小的优点,故采用此种方法作为测量电磁参数手段。对碳纳米管电磁参数测量实验结果表明,碳纳米管吸波材料在低频下对于微波能的损耗兼具电损耗和磁损耗。对碳纳米管吸波产热特性实验结果表明,碳纳米管是一种强吸波材料。
        The microwave thermal utilization technology has promoted the application study of microwave absorbing materials. Carbon nanotubes(CNTs), small in density, large in surface area and with quantum size effect,are new strong absorbing materials in recent years. This article investigated the complex permittivity and complex permeability of CNTs with the change of carbon nanotubes content. On basis of it, absorbing heat generation properties of carbon nanotube were explored under microwave radiation. The coaxial transmission method is suitable for the measurement of small samples which is accurate, so choosing this method to explore its electromagnetic parameters. The results show that both electrical and magnetic losses are exits in CNTs when losing microwave energy. From study of heat generation properties, it is concluded that CNTs is a material whose microwave absorbing ability is strong.
引文
[1] Veronesi P, Colombini E, Rosa R, et al. Microwave processing of high entropy alloys:a powder metallurgy approach[J]. Chemical Engineering and Processing:Process Intensification, 2017, 122:397-403.
    [2] Wang J, Li X, He Y, et al. Purification of metallurgical grade silicon by a microwave-assisted plasma process[J]. Separation and Purification Technology, 2013, 102:82-85.
    [3] Payette M, Work T T, Drouin P, et al. Efficacy of microwave irradiation for phytosanitation of wood packing materials[J].Industrial Crops and Products, 2015, 69:187-196.
    [4] Atuonwu J C, Tassou S A. Quality assurance in microwave food processing and the enabling potentials of solid-state power generators:a review[J]. Journal of Food Engineering, 2018, 234:1-15.
    [5] Kumar R C, Benal M M, Prasad B D, et al. Microwave assisted extraction of oil from pongamia pinnata seeds[J]. Materials Today:Proceedings, 2018, 5(1):2960-2964.
    [6] Hao Y, Li W, Wang H, et al. Autophagy mediates the degradation of synaptic vesicles:a potential mechanism of synaptic plasticity injury induced by microwave exposure in rats[J]. Physiol. Behav.,2018, 188:119-127.
    [7] Beneroso D, Berm D J M, Arenillas A, et al. Influence of the microwave absorbent and moisture content on the microwave pyrolysis of an organic municipal solid waste[J]. Journal of Analytical and Applied Pyrolysis, 2014, 105:234-240.
    [8] Niu B, Chen Z, Xu Z. Application of pyrolysis to recycling organics from waste tantalum capacitors[J]. J. Hazard. Mater.,2017, 335:39-46.
    [9] Beneroso D, Berm D J M, Arenillas A, et al. Oil fractions from the pyrolysis of diverse organic wastes:the different effects of conventional and microwave induced pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2015, 114:256-264.
    [10] Chen J, Xue S, Song Y, et al. Microwave-induced carbon nanotubes catalytic degradation of organic pollutants in aqueous solution[J]. J. Hazard. Mater., 2016, 310:226-234.
    [11] Wang H, Ding J, Ren N. Recent advances in microwave-assisted extraction of trace organic pollutants from food and environmental samples[J]. Trends in Analytical Chemistry, 2016, 75:197-208.
    [12] Hu Y, He Y, Cheng H. Microwave-induced degradation of Nnitrosodimethylamine(NDMA)sorbed in zeolites:effect of mineral surface chemistry and non-thermal effect of microwave[J]. Journal of Cleaner Production, 2018, 174:1224-1233.
    [13] Wang W, Wang B, Sun J, et al. Numerical simulation of hot-spot effects in microwave heating due to the existence of strong microwave-absorbing media[J]. RSC Advances, 2016, 6(58):52974-52981.
    [14] Ju Y, Fang J, Liu X, et al. Photodegradation of crystal violet in TiO2suspensions using UV-vis irradiation from two microwavepowered electrodeless discharge lamps(EDL-2):products,mechanism and feasibility[J]. J. Hazard. Mater., 2011, 185(2/3):1489-1498.
    [15] Lin L, Yuan S, Chen J, et al. Treatment of chloramphenicolcontaminated soil by microwave radiation[J]. Chemosphere, 2010,78(1):66-71.
    [16] Ramezanzaeh G, Ghasemi A, Mozaffarinia R, et al.Electromagnetic wave reflection loss and magnetic properties of M-type SrFe12-x(Mn0.5Sn0.5)x O19hexagonal ferrite nanoparticles in the Ku microwave band[J]. Ceramics International, 2017, 43(13):10231-10238.
    [17] Xie G Q, Han X, Long S Y. Effect of small size on dispersion characteristics of wave in carbon nanotubes[J]. International Journal of Solids and Structures, 2007, 44(3/4):1242-1255.
    [18] Liu H, Tao Y. Size effect of quantum conductance in singlewalled carbon nanotube quantum dots[J]. The European Physical Journal B-Condensed Matter, 2003, 36(3):411-418.
    [19]蒋才华.稀土掺杂及与聚苯胺复合对锶铁氧体微波吸收的改性研究[D].长沙:中南大学, 2009.Jiang C H. Study on the modification of microwave absorption of strontium ferrite by rare earth doping and polyaniline complex[D].Changsha:Central South University, 2009.
    [20]田薇薇.导电聚苯胺基吸波复合材料的制备及性能研究[D].沈阳:沈阳理工大学, 2010.Tian W W. Preparation and properties of conductive polyanilinebased microwave absorbing composites[D]. Shenyang:Shenyang University of Technology, 2010.
    [21]袁俊.铁基磁粉吸收剂的表面改性研究[D].武汉:华中科技大学, 2012.Yuan J. Surface modification of iron based magnetic powder absorbers[D]. Wuhan:Huazhong University of Science and Technology, 2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700