不同苎麻品种(系)茎秆抗折力和植株性状的差异及其相关性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Assessment of Loding Resistance of Ramie Varieties and Relationship with Plant Traits
  • 作者:陈平 ; ; 朱爱国 ; 陈继康 ; 高钢 ; 陈坤梅 ; 欧文静 ; 喻春明
  • 英文作者:CHEN Ping;MA Lan;ZHU Aiguo;CHEN Jikang;GAO Gang;CHEN Kunmei;OU Wenjing;YU Chunming;Institute of Bast Fiber Crops,Chinese Academy of Agricultural Sciences;
  • 关键词:苎麻 ; 抗折力 ; 植株性状 ; 相关性
  • 英文关键词:ramie;;breaking resistance;;plant character;;correlation
  • 中文刊名:ZGMZ
  • 英文刊名:Plant Fiber Sciences in China
  • 机构:中国农业科学院麻类研究所;
  • 出版日期:2019-06-10
  • 出版单位:中国麻业科学
  • 年:2019
  • 期:v.41;No.197
  • 基金:中国农业科学院科技创新工程(ASTIP-IBFC);; 国家麻类产业技术体系建设专项(CARS-16-E03);; 中央级公益性科研院所基本科研业务费专项(1610242019004)
  • 语种:中文;
  • 页:ZGMZ201903003
  • 页数:6
  • CN:03
  • ISSN:43-1467/S
  • 分类号:16-20+28
摘要
以2014~2015年国家苎麻品种(系)生产试验的7个品种(系)为研究对象,研究了三麻成熟期7个苎麻品种(系)在植株性状、茎秆抗折力、木质素含量差异及各测试指标间的相关性。结果表明:不同苎麻品种(系)间在株高、茎粗、壁厚、茎段重量、木质素含量及抗折力方面差异显著。0501株高、茎粗、壁厚、茎段重量和抗折力均列第一位。在茎秆木质素含量方面,G59最高;在皮厚方面,中苎1号最厚;抗折力方面,0501、NC03、中苎1号表现较高。相关分析表明,抗折力与株高、茎粗和壁厚呈显著正相关,与茎段重量呈极显著正相关(相关系数为0.960),与皮厚、木质素含量间相关性未达到显著水平。
        Six varieties and control variety Zhongzhu NO.1 were selected as materials to investigate the differences in breaking resistance and other plant characters such as plant height,weight of stem segment,lignin content of stem,stem diameter,wall diameter,fresh bast thickness,etc. Relationships among these traits were studied using the correlation analysis. The results showed that 0501 ranked the first in plant height,stem weight,stem diameter and breaking resistance. G59 had the highest lignin content of stem,and Zhongzhu NO.1 had the thickest fresh bast thickness among all varieties. Breaking resistance of 0501,NC03 and Zhongzhu NO.1 was relatively higher than other varieties. Correlation analysis showed that breaking resistance was significantly correlated to the plant height,stem diameter and wall diameter,extremely significant to weight of stem segment,whereas no significant correlation with fresh bast thickness and lignin content of stem.
引文
[1]Berry P M,Sterling M,Spink J H,et al. Understanding and reducing lodging in cereals[J]. Advances in Agronomy,2004,84(4):217-271.
    [2]柏鹤.利用重组自交系群体对水稻茎秆强度与穗弯曲度等性状的QTL分析[D].延吉:延边大学,2017.
    [3]Zhu L H,Zhong D B,Xu J L,et al. Differential expression of lodging resistance related QTLs in rice(Oryza sativa L.)[J]. Plant Science,2008,175(6):898-905.
    [4]潘婷,胡文静,李东升,等.小麦茎秆实心度对茎秆强度的影响及相关性状QTL分析[J].作物学报,2017,43(1):9-18.
    [5]郭会君.小麦茎秆强度及其相关性状的QTL分析[D].北京:中国农业科学院,2002.
    [6]Keller M,Karutz C,Schmid J E,et al. Quantitative trait loci for lodging resistance in a segregating wheat×spelt population[J]. Theoretical&Applied Genetics,1999,98(6-7):1171-1182.
    [7]王涛.玉米IBM群体抗倒伏相关性状的QTL分析[D].雅安:四川农业大学,2015.
    [8]曾维爱,谭济才,崔国贤,等.植物生长调节剂对苎麻茎秆抗倒伏性的影响[J].中国农业科学,2005(12):2577-2581.
    [9]曾维爱.植物生长调节剂对苎麻纤维产量、纤维品质及抗倒性的影响[D].长沙:湖南农业大学,2004.
    [10]周航.苎麻抗倒伏评价及抗倒伏相关性状的研究[D].武汉:华中农业大学,2017.
    [11]官邑.油菜抗倒伏性及其影响因素[J].作物研究,2014,28(2):216-220.
    [12]范思静.小麦茎秆强度与抗倒伏的关系[D].合肥:安徽农业大学,2013.
    [13]Kong E,Liu D,Guo X,et al. Anatomical and chemical characteristics associated with lodging resistance in wheat[J]. The Crop Journal,2013,1(1):43-49.
    [14]Pinera-Chavez F J,Berry P M,Foulkes M J,et al. Avoiding lodging in irrigated spring wheat. I. Stem and root structural requirements[J]. Field Crops Research,2016,196:325-336.
    [15]周蓉,王贤智,张晓娟,等.大豆种质倒伏抗性评价方法研究[J].大豆科学,2007(4):484-489.
    [16]Foulkes M J,Slafer G A,Davies W J,et al. Raising yield potential in wheat. III. Optimizing partitioning to grain while maintaining lodging resistance[J]. Journal of Experimental Botany,2010,62(2):469-486.
    [17]黄琰,赵泽松,春梅.水稻倒伏原因及评价倒伏方法的研究进展[J].黑龙江生态工程职业学院学报,2011,24(1):30-31.
    [18]汤清明,唐守伟,朱四元,等. 2014-2015年国家苎麻新品种(系)生产试验总结[J].中国麻业科学,2016,38(3):129-135.
    [19]徐鑫,郭克君,谭新建,等.苎麻茎秆的力学性能研究[J].湖南农业大学学报(自然科学版),2018,44(4):447-452.
    [20]苏工兵.苎麻茎秆力学建模及有限元模拟分析研究[D].武汉:华中农业大学,2007.
    [21]沈成,陈巧敏,李显旺,等.苎麻茎秆轴向压缩力学试验与分析[J].浙江农业学报,2016,28(4):688-692.
    [22]沈成,李显旺,田昆鹏,等.苎麻茎秆力学模型的试验分析[J].农业工程学报,2015,31(20):26-33.
    [23]晏科满,邹舒畅,唐令波,等.苎麻茎秆冲击断裂韧性试验与分析[J].农业工程学报,2014,30(21):308-315.
    [24]蔡再生.纤维化学与物理[M].北京:中国纺织出版社,2009.
    [25]Turner S R,Somerville C R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall[J]. Plant Cell,1997,9(5):689-701.
    [26]Baucher M,Monties B,Montagu M V,et al. Biosynthesis and Genetic Engineering of Lignin[J]. Critical Reviews in Plant Sciences,1998,17(2):125-197.
    [27]邹俊林,刘卫国,袁晋,等.套作大豆苗期茎秆木质素合成与抗倒性的关系[J].作物学报,2015,41(7):1098-1104.
    [28]卢昆丽,尹燕枰,王振林,等.施氮期对小麦茎秆木质素合成的影响及其抗倒伏生理机制[J].作物学报,2014,40(9):1686-1694.
    [29]Berry P M,Spink J,Sterling M,et al. Methods for Rapidly Measuring the Lodging Resistance of Wheat Cultivars[J]. Journal of Agronomy&Crop Science,2010,189(6):390-401.
    [30]江林.小麦木质素含量与茎秆强度的关系[D].合肥:安徽农业大学,2013.
    [31]张文华.甘蓝型油菜抗倒伏相关性状的遗传分析和QTL定位[D].武汉:华中农业大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700