四川盆地寒武系含盐盆地演化及其找钾意义:来自碳氧同位素的证据
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carbon and oxygen isotopic compositions of Cambrian marine carbonates in Sichuan Basin,China:Implications for sedimentary evolution and potash finding
  • 作者:王淑丽 ; 郑绵平 ; 张震 ; 苏奎
  • 英文作者:WANG Shuli;ZHENG Mianping;ZHANG Zhen;SU Kui;Key Laboratory of Saline Lake Resources and Environments,Institute of Mineral Resources,Chinese Academy of Geological Sciences;General Institute of Chemical Geology Survey,China Chemical Geology and Mine Bureau;
  • 关键词:四川盆地 ; 寒武系 ; 碳氧同位素 ; 含盐盆地 ; 盆地演化
  • 英文关键词:Sichuan Basin;;Cambrian;;carbon and oxygen isotope;;salt-bearing basin;;sedimentary evolution
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:中国地质科学院矿产资源研究所国土资源部盐湖资源与环境重点实验室;中化地质矿山总局化工地质调查总院;
  • 出版日期:2016-04-15 15:34
  • 出版单位:地学前缘
  • 年:2016
  • 期:v.23;No.121
  • 基金:国家自然科学基金青年项目(41403019);; 中国地质调查局项目(1212010011810,12120113078500)
  • 语种:中文;
  • 页:DXQY201605028
  • 页数:19
  • CN:05
  • ISSN:11-3370/P
  • 分类号:206-224
摘要
四川盆地寒武系岩盐分布广泛,面积约20万km2,主要分布于川东南、滇东北、渝东北、黔西北和鄂西北等地。含盐层位主要为中下寒武统(寒武系第二统与第三统)。不同地区的含盐层位不同,根据含盐盆地的分布与含盐系地层,将四川盆地大致划分为两个膏盐聚集区(次盐盆地):(1)川东南次盐盆地;(2)渝东北次盐盆地。川东南次盐盆地含盐层位为下寒武统清虚洞组(寒武系第二统第四阶中上部);渝东北次盐盆地含盐层位为中寒武统覃家庙组(寒武系第三统)。前人对四川盆地在岩相古地理与找钾水化学等方面进行了较多研究,但缺少寒武系钻孔样品的碳酸盐岩碳氧同位素分析其含盐盆地的演化研究。所以本文首次选取四川盆地寒武系3个具有代表性的钻孔岩屑样品(丁山1井、临7井与建深1井),对碳酸盐岩碳氧同位素组成进行对比分析,认为四川盆地寒武系碳酸盐岩δ13 C负漂移多与海退及生物灭绝事件有关,δ13 C的正漂移则多受海侵事件影响。四川盆地寒武纪海进、海退交替较为频繁,有利于组成良好的生储盖组合而形成油气藏。四川盆地下寒武统龙王庙阶(第四阶中上部)在川东南地区环境相对封闭,蒸发作用强烈,形成以江津—泸州为沉积中心的膏盐岩沉积区。中寒武世建深1井碳酸盐岩样品的δ13 C相对临7井较高,盐度也相对较高。结合四川盆地岩相古地理研究,认为从早寒武世至中寒武世古海水的浓缩方向有由川东南次盆地向渝东北次盆地演化的趋势,该认识对该区寒武系成盐找钾提供重要的依据,对成油气条件研究也有一定的参考价值。
        The Cambrian evaporite basin developed in Sichuan Basin covers an area of~200000km2;the saltbearing areas are mainly distributed in the central part of the evaporite basin,e.g.southeastern Sichuan,northwestern Guizhou,northeastern Chongqing,and northwestern Hubei(Jiannan).The main salt-bearing strata in this area are the Lower Cambrian and Middle Cambrian(second and third series),which are different in various areas.According to the characteristics of salt-bearing strata and its spatial distribution,the evaporite basin is broadly divided into two gypsum-halite accumulation areas(subbasins):the southeastern Sichuan subbasin and northeastern Chongqing subbasin.The main salt-bearing horizon in southeastern Sichuan is mainly the Lower Cambrian Qingxudong Formation(mid-upper part of the fourth stage of the Cambrian);the salt-bearing horizon in northeastern Chongqing is mainly the Middle Cambrian Qinjiamiao Formation(third series).Previously,many studies on lithofacies paleogeography and potash finding hydrochemistry had been done,but lack of the study on carbon and oxygen isotope analyzes for drilling samples of Cambrian carbonate in studying the evolution of salt basin.The present study chooses Cambrian carbonate samples from the three representative drillings(Dingshan No1 well,Lin No7 well and Jianshen No1well)to analyze the carbon and oxygen isotope composition.We hold the opinion that theδ13 C negative drift is related with marine regression and biological extinction events andδ13 C positive drift is mainly effected by marine transgressive events.The frequently alternation of transgression and regression in Cambrian is good for the formation of source-reservoircaprock system in Sichuan Basin,and the formation of ancient reservoirs.Southeastern Sichuan subbasin is a closed and strongly evaporation environment in Longwanniao formation(the middle and upper part of the fourth stage),forming the depocentres of gypsum-halite accumulation areas in Jiangjin-Luzhou area.Theδ13 C value and salinity of Jianshen 1 well is higher than that of Lin 7 well.Combing with Sichuan Basin lithofacies paleogeography research,we consider that from early to mid-Cambrian the seawater was more and more highly concentrated from southeastern Sichuan subbasin to northeastern Chongqing subbasin,which is significant for potash finding and the study on hydrocarbon forming conditions in Sichuan Basin.
引文
[1]Keith M L,Weber J N.Carbon and oxygen isotopic composition of selected limestones and fossils[J].Geochimica et Cosmochimica Acta,1964,28:1787-1816.
    [2]陈锦石,陈文正.碳同位素地质学概论[M].北京:地质出版社,1983:157.
    [3]魏菊英,王关玉.同位素地球化学[M].北京:地质出版社,1988:166.
    [4]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000:316.
    [5]Kuleshov V N,Bych A F.Isotopic composition(δ13C,δ18 O)and origin of manganese carbonate ores of the Usa deposit(Kuznetskii Alatau)[J].Lithology and Mineral Resources,2002,37(4):330-343.
    [6]Maheshwari A,Sial A N,Mathur S C.Carbon and oxygen isotope profiles from the terminal Precambrian marwar supergroup,Rajasthan,India[J].Carbonates and Evaporites,2003,18(1):10-18.
    [7]严兆彬,郭福生,潘家永,等.碳酸盐岩C,O,Sr同位素组成在古气候、古海洋环境研究中的应用[J].地质找矿论丛,2005,20(1):53-56,65.
    [8]张秀莲.碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系[J].沉积学报,1985,3(4):17-30.
    [9]王淑丽.上扬子区寒武纪盐盆地沉积相及成盐找钾条件[D].北京:中国地质科学院,2013:132.
    [10]Wang S L,Zheng M P,Liu X F,et al.Distribution of Cambrian salt-bearing basins in China and its significance for halite and potash finding[J].Journal of Earth Science,2013,24(2):212-233.
    [11]郑绵平,李银彩.西南灯影—寒武系找钾可能性探讨与建议[R].北京:中国地质科学院地质矿产研究所五室钾盐组,1975:26.
    [12]郑绵平,李银彩.上扬子区震旦—寒武系找钾可能性探讨[J].地质科技,1978(1):39-52.
    [13]黄建国.上扬子区(四川盆地)寒武系的含盐性与地质背景[J].岩相古地理,1993,13(5):44-56.
    [14]蒲心纯,周浩达,王熙林,等.中国南方寒武纪岩相古地理与成矿作用[M].北京:地质出版社,1993:191.
    [15]马永生,陈洪德,王国力.中国南方构造-层序岩相古地理图集[M].北京:科学出版社,2009:301.
    [16]林耀庭.四川盆地寒武系盐卤沉积特征及找钾前景[J].盐湖研究,2009,17(2):13-20.
    [17]门玉澎,许效松,牟传龙,等.中上扬子寒武系蒸发岩相古地理[J].沉积与特提斯地质,2010,30(3):58-64.
    [18]王淑丽,郑绵平,焦建.上扬子区寒武系蒸发岩沉积相及成钾潜力分析[J].地质与勘探,2012,48(5):947-958.
    [19]王淑丽,郑绵平.寒武系盐盆地的分布特征及其对中国成盐找钾的意义[J].科技导报,2013,31(4):17-27.
    [20]金之钧,龙胜祥,周雁,等.中国南方膏盐岩分布特征[J].石油与天然气地质,2006,27(5):571-583.
    [21]林良彪,郝强,余瑜,等.四川盆地下寒武统膏盐岩发育特征与封盖有效性分析[J].岩石学报,2014,30(3):718-726.
    [22]谷志东,殷积峰,袁苗,等.四川盆地东部深层盐下震旦系—寒武系天然气成藏条件与勘探方向[J].石油勘探与开发,2015,42(2):137-149.
    [23]张水昌,张宝民,边立曾,等.中国海相烃源岩发育控制因素[J].地学前缘,2005,12(3):39-48.
    [24]彭善池,Babcock L E.全球寒武系年代地层再划分的新建议[J].地层学杂志,2005,29(1):92-93,96.
    [25]彭善池.华南新的寒武纪生物地层序列和年代地层系统[J].科学通报,2009,54(18):2691-2698.
    [26]彭善池.全球寒武系年代地层新划分[J].中国科学院院刊,2006,21(4):325-328.
    [27]彭善池,朱学剑,林焕令.全球寒武系芙蓉统和排碧阶及其底界层型在我国确立[J].地层学杂志,2004,28(1):92-94.
    [28]彭善池.全球寒武系四统划分框架正式确立[J].地层学杂志,2006,30(2):147-148.
    [29]彭善池.全球寒武系江山阶及其“金钉子”在我国正式确立[J].地层学杂志,2011,35(4):393-396.
    [30]陈舜牧.贵州寒武系膏盐岩沉积特征[R].贵阳:贵州省地质局105地质大队,1983:15.
    [31]钱自强,曲一华,刘群.钾盐矿床[M].北京:地质出版社,1994:273.
    [32]四川省地质矿产局.四川省区域地质志[M].北京:地质出版社,1991:730.
    [33]马永生,陈洪德,王国力.中国南方构造-层序岩相古地理图集[M].北京:科学出版社,2009:301.
    [34]蒲心纯,周浩达,王熙林,等.中国南方寒武纪岩相古地理与成矿作用[M].北京:地质出版社,1993:191.
    [35]陈旭,阮亦萍.中国古生代气候演变[M].北京:科学出版社,2001:325.
    [36]Derry L A,Kaufman A J,Jacobsen S B.Sedimentary cycling and environmental change in the late Proterozoic:Evidence from stable and radiogenic isotopes[J].Geochimica et Cosmochimica Acta,1992,56(3):1317-1329.
    [37]Kaufman A J,Jacobsen S B,Knoll A H.The Vendian record of Sr and C isotopic variations in seawater:Implications for tectonics and paleoclimate[J].Earth and Planetary Science Letters,1993,120(3/4):409-430.
    [38]Kaufman A,Knoll A.Neoproterozoic variations in the C-isotopic composition of seawater:Stratigraphic and biogeochemical implications[J].Precambrian Research,1995,73:27-49.
    [39]郭福生,彭花明,潘家永,等.浙江江山寒武系碳酸盐岩碳氧同位素特征及其古环境意义探讨[J].地层学杂志,2003,27(4):289-297.
    [40]Qing H,Veizer J.Oxygen and carbon isotopic composition of Ordovician brachiopods:Implications for coeval seawater[J].Geochimica et Cosmochimica Acta,1994,58:4429-4442.
    [41]王大锐,冯晓杰.渤海湾地区下古生界碳、氧同位素地球化学研究[J].地质学报,2002,76(3):400-408.
    [42]Brand U,Veizer J.Chemical diagenesis of a multicomponent carbonate system:Stable isotopes[J].Journal of Sedimentary Research,1981,51:987-997.
    [43]黄思静.海相碳酸盐岩矿物的阴极发光性与其成岩蚀变的关系[J].岩相古地理,1990,7(4):9-15.
    [44]Derry L A,Keto L S,Jacobsen S B,et al.Sr isotopic variations in Upper Proterozoic carbonates from Svalbard and East Greenland[J].Geochimica et Cosmochimica Acta,1989,53:2331-2339.
    [45]Kaufman A J,Knoll A H,Narbonne G M.Isotopes,ice ages,and terminal Proterozoic earth history[J].Proceedings of the National Academy of Sciences of the United States of America,1997,94:6600-6605.
    [46]Veizer J,Ala D,Azmy K,et al.87Sr/86Sr,13C and 18 O evolution of Phanerozoic seawater[J].Chemical Geology,1999,161(1):59-88.
    [47]李任伟,陈锦石,张淑坤.中元古代雾迷山组碳酸盐岩碳和氧同位素组成及海平面变化[J].科学通报,1999,44(16):1697-1702.
    [48]郑永飞,徐宝龙,周根陶.矿物稳定同位素地球化学研究[J].地学前缘,2000,7(2):299-320.
    [49]黄思静,卿海若,胡作维,等.川东三叠系飞仙关组碳酸盐岩的阴极发光特征与成岩作用[J].地球科学:中国地质大学学报,2008,33(1):26-34.
    [50]陈强,张慧元,李文厚,等.鄂尔多斯奥陶系碳酸盐岩碳氧同位素特征及其意义[J].古地理学报,2012,14(1):117-124.
    [51]黄思静,黄可可,吕杰,等.早三叠世海水的碳同位素组成与演化:来自四川盆地东部的研究[J].中国科学:地球科学,2012,42(10):1508-1522.
    [52]Walter M R,Veevers J J,Calver C R,et al.Dating the 840-544Ma Neoproterozoic interval by isotopes of strontium,carbon,and sulfur in seawater,and some interpretative models[J].Precambrian Research,2000,100(1/2/3):371-433.
    [53]Derry L A,Brasier M D,Corfield R M,et al.Sr and C isotopes in lower Cambrian carbonates from the Siberian craton:A paleoenvironmental record during the‘Cambrian explosion’[J].Earth and Planetary Science Letters,1994,128(3/4):671-681.
    [54]黄思静.上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究[J].地质学报,1997,71(1):45-53.
    [55]李忠雄,管士平.扬子地台西缘宁蒗泸沽湖地区志留系沉积旋回及锶、碳、氧同位素特征[J].古地理学报,2001,3(4):69-76.
    [56]彭苏萍,何宏,邵龙义,等.塔里木盆地C、O碳酸盐岩碳同位素组成特征[J].中国矿业大学学报,2002,31(4):353-357.
    [57]王国庆,夏文臣.贵州紫云剖面P/T界面附近碳氧同位素的变化及生物绝灭事件[J].地学前缘,2000,7(2):339-344.
    [58]旷红伟,李家华,彭楠,等.燕山地区1.6~1.0Ga时期碳酸盐岩碳、氧同位素组成、演化及其地质意义[J].地学前缘,2009,16(5):118-133.
    [59]朱井泉.四川华蓥山三叠系含膏盐段的碳氧同位素特征及其意义[J].岩石学报,1990,5(4):67-74.
    [60]Hudson J.Stable isotopes and limestone lithification[J].Journal of the Geological Society,1977,133:637-660.
    [61]许靖华,何起祥,吴应林,等.我国西南早中三叠世间“绿豆岩”等时面上下的碳、氧稳定同位素地球化学[G]∥中国地质科学院成都地质矿产研究所文集.北京:地质出版社,1983:4-15.
    [62]《沉积地球化学应用》编写组.第六讲:稳定同位素在古环境研究中的应用[J].岩相古地理,1988(3/4):98-107.
    [63]谢渊,罗建宁,张哨楠,等.羌塘盆地那底岗日地区中侏罗世碳酸盐岩碳、氧、锶同位素与古海洋沉积环境[J].矿物岩石,2000,20(1):80-86.
    [64]谢渊,王剑,刘家铎,等.羌塘盆地那底岗日地区中侏罗世层序地层与碳、氧、锶同位素响应[J].沉积学报,2002,20(2):188-196.
    [65]Nier A O,Gulbransen E A.Variations in the relative abundance of the carbon isotopes[J].Journal of the American Chemical Society,1939,61(3):697-698.
    [66]Harold C U.The origin and development of the earth and other terrestrial planets[J].Geochimica et Cosmochimica Acta,1951,1(4/5/6):209-277.
    [67]郭福生,潘家永,刘林清,等.浙江江山石炭—二叠系碳酸盐岩碳氧同位素特征研究[J].地球化学,2004,33(1):1-8.
    [68]邵龙义,张鹏飞.桂中合山组碳酸盐岩的氧、碳稳定同位素组成及古盐度和古温度[J].中国煤田地质,1991,3(1):25-30.
    [69]邵龙义.碳酸盐岩氧、碳同位素与古温度等的关系[J].中国矿业大学学报,1994,23(1):21-26.
    [70]Schidtowski M,Eichmann R,Junge C E.Precambrian sedimentary carbonates:Carbon and oxygen isotope geochemistry and implication for the terrestrial oxygen budget[J].Precambrian Research,1975,2(1):21-226.
    [71]Mackenzie F T.Sedimentary cycling and evolution of sea water[M]∥Chemical Oceanography.2nd ed.London:Academic Press,1975:309-364.
    [72]叶德胜.海相碳酸盐岩原始氧碳同位素组分随地质历史的变化[J].岩相古地理,1992(2):51-56.
    [73]Veizer J,Fritz P,Jones B.Geochemistry of Brachiopods:Oxygen and carbon isotopic records of Paleozoic Oceans[J].Geochimica et Cosmochimica Acta,1986,50(8):1679-1696.
    [74]Popp B N,Anderson T F,Sandberg P A.Textural,elemental,and isotopic variations among constituents in middle devonian limestones,North America[J].Journal of Sedimentary Research,1986,56(5):715-727.
    [75]Pokrovsky B,Bujakaite M.Geochemistry of C,O,and Sr isotopes in the Neoproterozoic carbonates from the southwestern Patom Paleobasin,southern middle Siberia[J].Lithology and Mineral Resources,2015,50(2):144-169.
    [76]Magaritz M,Kirschvink J L,Latham A J,et al.Precambrian/Cambrian boundary problem:Carbon isotope correlations for vendian and tommotian time between Siberia and Morocco[J].Geology,1991,19(8):847-850.
    [77]左景勋,彭善池,朱学剑.扬子地台寒武系碳酸盐岩的碳同位素组成及地质意义[J].地球化学,2008,37(2):118-128.
    [78]王小林,胡文瑄,李庆,等.塔里木盆地蓬莱坝剖面寒武系第二统—第三统界线处碳同位素负异常及其地质意义[J].地质论评,2011,57(1):16-23.
    [79]樊茹,邓胜徽,张学磊.寒武系碳同位素漂移事件的全球对比性分析[J].中国科学:地球科学,2011,41(12):1829-1839.
    [80]Fan R,Deng S H,Zhang X L.Significant carbon isotope excursions in the Cambrian and their implications for global correlations[J].Science China Earth Science,2011,54(11):1686-1695.
    [81]Brasier M D,Anderson M M,Corfield R M.Oxygen and carbon isotope stratigraphy of early Cambrian carbonates in southeastern Newfoundland and England[J].Geological Magazine,1992,129(3):265-279.
    [82]Brasier M D,Magaritz M,Corfield R,et al.The carbon-and oxygen-isotope record of the Precambrian-Cambrian boundary interval in China and Iran and their correlation[J].Geological Magazine,1990,127(4):319-332.
    [83]Kouchinsky A,Bengtson S,Pavlov V,et al.Carbon isotope stratigraphy of the Precambrian-Cambrian sukharikha riversection,Northwestern Siberian platform[J].Geological Magazine,2007,144(4):1-10.
    [84]Zhu M Y,Babcock L E,Peng S C.Advances in Cambrian stratigraphy and paleontology:Integrating correlation techniques,paleobiology,taphonomy and paleoenvironmental reconstruction[J].Palaeoworld,2006,15(3):217-222.
    [85]Saltzman M R,Runnegar B,Lohmann K C.Carbon isotope stratigraphy of Upper Cambrian(Steptoean stage)sequences of the eastern Great Basin:Record of a global oceanographic event[J].Geological Society of America Bulletin,1998,110(3):285-297.
    [86]Patterson W P,Walter L M.Depletion of 13C in seawater∑CO2 on modern carbonate platforms:Significance for the carbon isotopic record of carbonates[J].Geology,1994,22(10):885-888.
    [87]杨杰东,王宗哲.新疆柯坪地区早古生代地层的碳、氧和锶同位素[J].地质论评,1994,40(4):377-385.
    [88]Jenkyns H C,Gale A S.Carbon-isotope and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its paleoclimatic significance[J].Geological Magazine,1994,131(1):1-34.
    [89]李祥辉,王成善,崔杰.高分辨率碳氧同位素应用及西藏岗巴地区白垩纪中期Cenomanian-Turonian期碳同位素偏移[J].地学前缘,2005,12(2):171-177.
    [90]Vinogradov V I.Carbon and oxygen isotopic composition of the Vendian-Cambrian carbonate rocks and paleoecological reconstructions[J].Lithology and Mineral Resources,2008,43(1):44-75.
    [91]杨瑞东,王世杰,杨瑞东,等.贵州台江中、下寒武统界线附近碳同位素负异常的生物和地层意义[J].中国科学D辑,2002,32(6):500-506.
    [92]lvaro J J,Ahlberg P,Axheimer N.Skeletal carbonate productivity and phosphogenesis at the lower-middle Cambrian transition of Scania,Southern Sweden[J].Geological Magazine,2010,147(1):59-76.
    [93]Brasier M D.Towards a carbon isotope stratigraphy of the Cambrian system:Potential of the Great Basin succession[J].Geological Society,London,Special Publications,1993,70(1):341-350.
    [94]Kouchinsky A,Bengtson S,Gallet Y,et al.The spice carbon isotope excursion in Siberia:A combined study of the Upper Middle Cambrian-lowermost Ordovician Kulyumbe river section,northwestern Siberian platform[J].Geological Magazine,2008,145(5):609-622.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700