时序网络控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Controlling Temporal Networks
  • 作者:李阿明 ; 王龙
  • 英文作者:LI A-Ming;WANG Long;Center for Systems and Control,Peking University;Department of Zoology,University of Oxford;
  • 关键词:时序网络 ; 复杂系统 ; 控制 ; 能量 ; 轨迹
  • 英文关键词:Temporal networks;;complex systems;;control;;energy;;trajectory
  • 中文刊名:STYS
  • 英文刊名:Journal of Systems Science and Mathematical Sciences
  • 机构:北京大学系统与控制研究中心;牛津大学动物系;
  • 出版日期:2019-02-15
  • 出版单位:系统科学与数学
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(61751301,61533001);; 国际人类前沿科学计划(LT000696/2018-C)资助课题
  • 语种:中文;
  • 页:STYS201902021
  • 页数:19
  • CN:02
  • ISSN:11-2019/O1
  • 分类号:54-72
摘要
近年来,网络科学的发展为探究复杂系统动力学提供了有效方法.复杂网络控制的研究,为我们通过外部输入控制系统状态的演化提供了新的思路.针对时序网络控制这一新的研究方向,文章首先介绍了其可控性方面相关研究现状.其次,文章梳理了在实现系统最优控制时所需考虑的控制能量及控制轨迹等相关研究结果.最后总结了该领域仍需解决的重要问题并展望了未来研究方向.
        In recent years, the development of network science offers an efficient way to explore various dynamics of complex systems. By virtue of the investigations on controlling complex networks, we can control the evolution of systems' states via admissible external inputs. In this paper, apart from reviewing explorations on the controllability of temporal networks, we present the recent progress on exploring the optimal control energy and control trajectory, which play a vital role in the implementation of control in practice. Finally, we discuss several open problems and possible research directions in this area.
引文
[1]Nicolis G, Prigogine I. Self-Organization in Nonequilibrium Systems:From Dissipative Structures to Order Through Fluctuations. Hoboken, New Jersey:John Wiley&Sons, 1977.
    [2]钱学森,于景元,戴汝为.一个科学新领域——开放的复杂巨系统及其方法论.自然杂志,1990, 13(1):3-10.(Qian X S, Yu J Y, Dai R W. A new discipline of science—The study of open complex giant system and its methodology. Chinese Journal of Nature, 1990, 13(1):3-10.)
    [3]郭雷.系统学是什么.系统科学与数学,2016, 36(3):291-301.(Guo L. What is systematology. Journal of Systems Science and Mathematical Sciences, 2016,36(3):291-301.)
    [4]Waldrop M M. Complexity:The Emerging Science at the Edge of Order and Chaos. New York:Simon&Schuster, 1992.
    [5]Prigogine I. The End of Certainty:Time, Chaos and the New Laws of Nature. New York:Free Press, 1997.
    [6]成思危.复杂性科学探索.北京:民主与建设出版社,1999.(Cheng S W. Explorations of Complexity Science. Beijing:Democracy and Construction Press,1999.)
    [7]Gallagher R, Appenzeller T. Beyond reductionism. Science, 1999, 284:79.
    [8]Strogatz S H. Sync:The Emerging Science of Spontaneous Order. New York:Hyperion Press,2003.
    [9]Barabasi A L. Taming complexity. Nature Physics, 2005, 1:68-70.
    [10]王龙,伏锋,陈小杰,等.演化博弈与自组织合作.系统科学与数学,2007, 27(3):330-343.(Wang L, Fu F, Chen X J, et al. Evolutionary games and self-organizing cooperation. Journal of Systems Science and Mathematical Sciences, 2007, 27(3):330-343.)
    [11]Euler L. Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Scientiarum Petropolitanae, 1736, 8:128-140.
    [12]Erdos P, Renyi A. On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 1960, 5:17.
    [13]Bollobas B. Random Graphs. London:Academic Press, 1985.
    [14]Wasserman S, Faust K. Social Network Analysis:Methods and Applications. Cambridge:Cambridge University Press, 1994.
    [15]Barabasi A L. Linked:The New Science of Networks. New York:Perseus Books Group, 2002.
    [16]Cohen R, Havlin S. Complex Networks:Structure, Robustness and Function. Cambridge:Cambridge University Press, 2010.
    [17]Barrat A, Barthelemy M, Vespignani A. Dynamical Processes on Complex Networks. Cambridge:Cambridge University Press, 2008.
    [18]Newman M. Networks:An Introduction. Oxford:Oxford University Press, 2010.
    [19]Watts D J, Strogatz S H. Collective dynamics of'small-world'networks. Nature, 1998, 393:440-442.
    [20]Barabasi A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286:509-512.
    [21]Albert R, Barabasi A L. Statistical mechanics of complex networks. Review of Modern Physics,2002, 74:47-97.
    [22]Boccaletti S, Latora V, Moreno Y, et al. Complex networks:Structure and dynamics. Physics Reports, 2006, 424:175-308.
    [23]Arenas A, Daz-Guilera A, Kurths J, et al. Synchronization in complex networks. Physics Reports,2008, 469:93-153.
    [24]Girvan M, Newman M E J. Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the USA, 2002, 99:7821-7826.
    [25]Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks. Physical Review Letters, 2001, 86:3200-3203.
    [26]Barzel B, Barabasi A L. Universality in network dynamics. Nature Physics, 2013, 9:673-681.
    [27]Santos F C, Pacheco J M. Scale-free networks provide a unifying framework for the emergence of cooperation. Physical Review Letters, 2005, 95:098104.
    [28]Li A, Wang L. Evolutionary dynamics of synergistic and discounted group interactions in structured populations. Journal of Theoretical Biology, 2015, 377:57-65.
    [29]Brockmann D, Hufnagel L, Geisel T. The scaling laws of human travel. Nature, 2006, 439:462-465.
    [30]Barabasi A L. The origin of bursts and heavy tails in human dynamics. Nature, 2005, 435:207-211.
    [31]Isella L, Stehle J, Barrat A, et al. What's in a crowd? Analysis of face-to-face behavioral networks.Journal of Theoretical Biology, 2011, 271:166-180.
    [32]Fournet J, Barrat A. Contact patterns among high school students. PLoS ONE, 2014, 9:e107878.
    [33]Mastrandrea R, Fournet J, Barrat A. Contact patterns in a high school:A comparison between data collected using wearable sensors, contact diaries and friendship surveys. PLoS ONE, 2015,10:1-26.
    [34]Williams G, Rogado I, Budz B, et al. Seasonal transmission potential and activity peaks of the new influenza A(H1N1):A Monte Carlo likelihood analysis based on human mobility. BMC Medicine, 2009, 12:45.
    [35]Pastor-Satorras R, Castellano C, Van Mieghem P, et al. Epidemic processes in complex networks.Reviews of Modern Physics, 2104, 87:925-979.
    [36]Buldyrev S V,Parshani R, Paul G, et al. Catastrophic cascade of failures in interdependent networks. Nature, 2010, 464:1025-1028.
    [37]Brummitt C D, D'Souza R M, Leicht E A. Suppressing cascades of load in interdependent networks. Proceedings of the National Academy of Sciences of the USA, 2012, 109:E680-E689.
    [38]Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks. Nature,2010, 407:651-654.
    [39]Jeong H, Mason S P, Barabasi A L, et al. Lethality and centrality in protein networks. Nature,2001, 411:41-42.
    [40]Li S, A map of the interactome network of the metazoan C. elegans. Science, 2004, 303(5657):540-543.
    [41]Han J D J, Bertin N, Hao T, et al. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature, 2004, 430(6995):88-93.
    [42]Blonder B, Dornhaus A. Time-ordered networks reveal limitations to information flow in ant colonies. PLoS ONE, 2011, 6:e20298.
    [43]Saavedra S, Rohr R P,Fortuna M A, et al. Seasonal species interactions minimize the impact of species turnover on the likelihood of community persistence. Ecology, 2016, 97:865-873.
    [44]Vicsek T, Czirok A, Ben-Jacob E, et al. Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 1995, 75:1226-1229.
    [45]Couzin I D, Jens K, Franks N R, et al. Effective leadership and decision-making in animal groups on the move. Nature, 2005, 433:513-516.
    [46]Ren J, Sun W, Manocha D, et al. Stable information transfer network facilitates the emergence of collective behavior of bird flocks. Physical Review E, 2018, 98:052309.
    [47]Kerr B, Neuhauser C, Bohannan B J M, et al. Local migration promotes competitive restraint in a host-pathogen'tragedy of the commons'. Nature, 2006, 442:75-78.
    [48]Nadell C D,Drescher K, Foster K R. Spatial structure, cooperation and competition in biofilms.Nature Reviews Microbiology, 2016, 14:589-600.
    [49]Bashan A, Gibson T E, Friedman J, et al. Universality of human microbial dynamics. Nature,2016, 534(7606):259-262.
    [50]Limdi A, Perez-Escudero A, Li A, et al. Asymmetric migration decreases stability but increases resilience in a heterogeneous metacommunity. Nature Communications, 2018, 9:1-8.
    [51]Barabasi A L. Network Science. London:Cambridge University Press, 2016.
    [52]Darwin C. On the Origin of Species. London:John Murray, 1859.
    [53]Hamilton W D. The genetical evolution of social behaviour i and ii. Journal of Theoretical Biology,1964, 7:1-52.
    [54]Bourke A F G, Franks N R. Social evolution in ants. Princeton, New Jersey:Princeton University Press, 1995.
    [55]Crozier R H, Pamilo P. Evolution of Social Insect Colonies:Sex Allocation and Kin Selection.Oxford:Oxford University Press, 1996.
    [56]Pennisi E. How did cooperative behavior evolve? Science, 2005, 309:93.
    [57]Pennisi E. On the origin of cooperation. Science, 2009, 325:1196-1199.
    [58]Maynard Smith J. Evolution and the Theory of Games. Cambridge:Cambridge University Press,1982.
    [59]West S A, Pen I, Griffin A S. Cooperation and competition between relatives. Science, 2002, 296:72-75.
    [60]Nowak M A. Five rules for the evolution of cooperation. Science, 2006, 314:1560-1563.
    [61]Smith J M, Price G R. The logic of animal conflict. Nature, 1973, 246:15-18.
    [62]Nowak M A, May R M. Evolutionary games and spatial chaos. Nature, 1992, 359:826-829.
    [63]Hauert C, Doebeli M. Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature, 2004, 428:643-646.
    [64]Ohtsuki H, Hauert C, Lieberman E, et al. A simple rule for the evolution of cooperation on graphs and social networks. Nature, 2006, 441:502-505.
    [65]Fu F, Hauert C, Nowak M A, et al. Reputation-based partner choice promotes cooperation in social networks. Physical Review E, 2008, 78:026117.
    [66]Allen B, Nowak M A. Games on graphs. EMS Surveys in Mathematical Sciences, 2014, 1:113-151.
    [67]Shakarian P, Roos P, Johnson A. A review of evolutionary graph, theory with applications to game theory. Biosystems, 2012, 107:66-80.
    [68]Broom M, Rychtar J. Game-Theoretical Models in Biology. Boca Raton:Taylor and Francis Group, 2013.
    [69]Santos F C,Pacheco J M. Scale-free networks provide a unifying framework for the emergence of cooperation. Physical Review Letters, 2005, 95:098104.
    [70]Hofbauer J, Sigmund K. Evolutionary Games and Population Dynamics. Cambridge:Cambridge University Press, 1998.
    [71]Nowak M A. Evolutionary Dynamics:Exploring the Equations of Life. Cambridge, MA:Harvard University Press, 2006.
    [72]Rapoport A, Chammah A, Prisoner's Dilemma:A Study in Conflict and Cooperation. Ann Arbor:University of Michigan Press, 1965.
    [73]Sugden R. The Economics of Rights, Co-operation and Welfare. New York:Blackwell, Oxford,1986.
    [74]Skyrms B. The Stag Hunt and the Evolution of Social Structure. Cambridge:Cambridge University Press, 2004.
    [75]Hardin G. The tragedy of the commons. Science, 1968, 162:1243-1248.
    [76]Hauert C, De Monte S, Hofbauer J,et al. Volunteering as red queen mechanism for cooperation in public goods games. Science, 2002, 296:1129-1132.
    [77]Archetti M, Scheuring I. Coexistence of cooperation and defection in public goods games. Evolution, 2011, 65:1140-1148.
    [78]Li A, Wu B, Wang L. Cooperation with both synergistic and local interactions can be worse than each alone. Scientific Reports, 2014, 4:5536.
    [79]Wu T, Fu F, Wang L. Coevolutionary dynamics of aspiration and strategy in spatial repeated public goods games. New Journal of Physics, 2018, 20:063007.
    [80]Wu T, Wang L. Adaptive play stabilizes cooperation in continuous public goods games. Physica A:Statistical Mechanics&Its Applications, 2018, 495:427-435.
    [81]Zheng D F, Yin H P, Chan C H, et al. Cooperative behavior in a model of evolutionary snowdrift games with n-person interactions. Europhysics Letters, 2007, 80:18002.
    [82]Souza M O, Pacheco J M, Santos F C. Evolution of cooperation under n-person snowdrift games.Journal of Theoretical Biology, 2009, 260:581-588.
    [83]Pacheco J M, Santos F C, Souza M O, et al. Evolutionary dynamics of collective action in nperson stag hunt dilemmas. Proceedings of the Royal Society B:Biological Sciences, 2009, 276:315-321.
    [84]Santos F P, Santos F C, Paiva A, et al. Evolutionary dynamics of group fairness. Journal of Theoretical Biology, 2015, 378:96-102.
    [85]Hauert C, Michor F, Nowak M, et al. Synergy and discounting of cooperation in social dilemmas.Journal of Theoretical Biology, 2006, 239:195-202.
    [86]Zhou L, Li A, Wang L. Evolution of cooperation on complex networks with synergistic and discounted group interactions. Europhysics Letters, 2015, 110:60006.
    [87]Zhou L, Li A, Wang L. Coevolution of nonlinear group interactions and strategies in well-mixed and structured populations. Journal of Theoretical Biology, 2018, 440:32-41.
    [88]Wu B, Arranz J, Du J, et al. Evolving synergetic interactions. Journal of the Royal Society Interface, 2016, 13:20160282.
    [89]Gokhale C, Traulsen A. Evolutionary games in the multiverse. Proceedings of the National Academy of Sciences of the USA, 2010, 107:5500-5504.
    [90]Wu B, Traulsen A, Gokhale C S. Dynamic properties of evolutionary multi-player games in finite populations. Games, 2013, 4:182-199.
    [91]Li A, Broom M, Du J, et al. Evolutionary dynamics of general group interactions in structured populations. Physical Review E, 2016, 93:022407.
    [92]Wu B, Zhou L. Individualised aspiration dynamics:Calculation by proofs. PLoS Computational Biology, 2018, 14:e1006035.
    [93]Chen X J, Szolnoki A, Perc M, et al. Impact of generalized benefit functions on the evolution of cooperation in spatial public goods games with continuous strategies. Physical Review E, 2012,85:066133.
    [94]Wang J, Fu F, Wang L. Effects of heterogeneous wealth distribution on public cooperation with collective risk. Physical Review E, 2010, 82:016102.
    [95]Nowak M A, May R M. Evolutionary games and spatial chaos. Nature, 1992, 359:826-829.
    [96]王龙,伏锋,陈小杰,等.复杂网络上的演化博弈.智能系统学报,2007, 2(2):1-10.(Wang L, Fu F, Chen X J, et al. Evolutionary games on complex networks. CAAL Transactions on Intelligent Systems, 2007, 2(2):1-10.)
    [97]王龙,丛睿,李昆.合作演化中的反馈机制.中国科学:信息科学,2014, 44(12):1495-1514.(Wang L, Cong R, Li K. Feedback mechanism in cooperation evolving. SCIENTIA SINICA Informationis, 2014, 44(12):1495-1514.)
    [98]Sood V, Redner S. Voter model on heterogeneous graphs. Physical Review Letters, 2005, 94:178701.
    [99]Eguiluz V M, Zimmermann M G. Transmission of information and herd behavior:An application to financial markets. Physical Review Letters, 2000, 85:5659-5662.
    [100]Wang L, Jiang F C, Xie G M, et al. Controllability of multi-agent systems based on agreement protocols. SCIENCE CHINA Information Sciences, 2009, 52:2074-2088.
    [101]Wang L, Xiao F. Finite-time consensus problems for networks of dynamic agents. IEEE Transactions on Automatic Control, 2010, 55:950-955.
    [102]王龙,杜金铭.多智能体协调控制的演化博弈方法.系统科学与数学,2016, 36(3):302-318.(Wang L, Du J M. Evolutionary game theoretic approach to coordinated control of multi-agent systems. Journal of Systems Science and Mathematical Sciences, 2016, 36(3):302-318.)
    [103]Duan G, Xiao F, Wang L. Asynchronous periodic edge-event triggered control for doubleintegrator networks with communication time delays. IEEE Transactions on Cybernetics, 2018,48:675-688.
    [104]SzabóG, Toke C. Evolutionary prisoner's dilemma game on a square lattice. Physical Review E,1998, 58:69-73.
    [105]诺伯特·维纳.控制论:关于在动物和机器中控制和通信的科学(第2版).北京:科学出版社,2009.(Wiener N. Cybernetics:Or the Control and Communication in the Animal and the Machine(Second Edition). Beijing:Science Press, 2009.)
    [106]Guo L. Exploring the maximum capability of adaptive feedback. International Journal of Adaptive Control and Signal Processing, 2002, 16:341-354.
    [107]程代展,陈翰馥.从群集到社会行为控制.科技导报,2004, 22(0408):4-7.(Cheng D Z, Chen H F. From swarm to social behavior control. Science&Technology Review,2004, 22(0408):4-7.)
    [108]钱学森.工程控制论(新世纪版).上海:上海交通大学出版社,2007.(Qian X S. Engineering Cybernetics. Shanghai:Shanghai Jiao Tong University Press, 2007.)
    [109]Khalil H. Nonlinear Systems. New Jersey:Prentice Hall, 2002.
    [110]郭雷.关于控制理论发展的某些思考.系统科学与数学,2011,31(9):1014-1018.(Guo L. Some perspectives on the development of control theory. Journal of Systems Science and Mathematical Sciences, 2011, 31(9):1014-1018.)
    [111]关永强,纪志坚,王龙.多智能体系统能控性研究进展.控制理论与应用,2015, 32(4):421-431.(Guan Y Q, Ji Z J, Wang L. Recent developments on controllability of multi-agent systems.Control Theory&Applications, 2015, 32(4):421-431.)
    [112]程代展,付世华.博弈控制论简述.控制理论与应用,2018, 35(5):588-592.(Cheng D Z, Fu S H. A survey on game theoretical control. Control Theory&Applications, 2018,35(5):588-592.)
    [113]Guo L. Further results on least squares based adaptive minimum variance control. SIAM Journal on Control and Optimization, 1994, 32:187-212.
    [114]Cheng D Z, He F, Qi H, et al. Modeling, analysis and control of networked evolutionary games.IEEE Transactions on Automatic Control, 2015, 60(9):2402-2415.
    [115]Kalman R E. Mathematical description of linear dynamical systems. Journal of the Society for Industrial and Applied Mathematics:Series B, 1963, 1:152-192.
    [116]郑大钟.线性系统理论(第2版).北京:清华大学出版社,2005.(Zheng D Z. Linear System Theory(2nd Ed.). Beijing:Tsinghua University Press, 2005.)
    [117]Newman M E J. The structure and function of complex networks. SIAM Review,2003,45:167-256.
    [118]Barabasi A L, Oltvai Z N. Network biology:Understanding the cell's functional organization.Nature Reviews Genetics, 2004, 5:101-113.
    [119]Szab6 G,Fáth G. Evolutionary games on graphs. Physics Reports,2007, 446:97-216.
    [120]Chen G. Pinning control and synchronization on complex dynamical networks. International Journal of Control, Automation and Systems, 2014, 12:221-230.
    [121]Chen G. Pinning control and controllability of complex dynamical networks. International Journal of Automation&Computing, 2017, 14:1-9.
    [122]Liu Y Y, Barabasi A L. Control principles of complex networks. Review of Modern Physics, 2016,88:035006.
    [123]Li A, Cornelius S P, Liu Y Y, et al. The fundamental advantages of temporal networks. Science,2017, 358:1042-1046.
    [124]Bassett D S, Sporns O. Network neuroscience. Nature Neuroscience, 2017, 20:353-364.
    [125]Schweitzer F. Sociophysics. Physics Today, 2018, 71:40-46.
    [126]Liu Y Y, Slotine J J, Barabasi A L. Controllability of complex networks. Nature, 2011, 473:167-173.
    [127]Lin C T. Structural controllability. IEEE Transactions on Automatic Control, 1974,19:201-208.
    [128]Yuan Z, Zhao C, Di Z, et al. Exact controllability of complex networks. Nature Communications,2013, 4:2447.
    [129]Ruths J, Ruths D. Control profiles of complex networks. Science, 2014, 343:1373-1376.
    [130]Pequito S, Kar S, Aguiar A. Optimal cost actuator/sensor placement for large scale linear timeinvariant systems:A structured systems approach. 2013 European Control Conference(ECC),2013, 815-820.
    [131]Olshevsky A. Minimal controllability problems. IEEE Transactions on Control of Network Systems, 2014, 1:249-258.
    [132]Jia T, Liu Y Y, Csoka E, et al. Emergence of bimodality in controlling complex networks. Nature Communications, 2013, 4:2002.
    [133]Gao J, Liu Y Y, D'Souza R M, et al. Target control of complex networks. Nature Communications,2014, 5:5415.
    [134]Nepusz T, Vicsek T. Controlling edge dynamics in complex networks. Nature Physics, 2012, 8:568-573.
    [135]Rajapakse I, Groudine M, Mesbahi M. Dynamics and control of state-dependent networks for probing genomic organization. Proceedings of the National Academy of Sciences of the USA, 2011,108:17257-17262.
    [136]Yan G, Ren J, Lai Y C, et al. Controlling complex networks:How much energy is needed?Physical Review Letters, 2012, 108:218703.
    [137]Klickstein I, Shirin A, Sorrentino F. Energy scaling of targeted optimal control of complex networks. Nature Communications, 2017, 8:15145.
    [138]Duan G, Li A, Meng T, et al. Energy cost for controlling complex networks. arXiv:1809.06067v1,2018.
    [139]Almaas E, Kovacs B, Vicsek T, et al. Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature, 2004, 427:839-843.
    [140]Holme P, Saramaki J. Temporal networks. Physics Reports, 2012, 519:97-125.
    [141]Holme, P. Modern temporal network theory:A colloquium. The European Physical Journal B,2015, 88:234.
    [142]Lentz H H K, Selhorst T,Sokolov I M. Unfolding accessibility provides a macroscopic approach to temporal networks. Physical Review Letters, 2013, 110:118701.
    [143]Starnini M, Baronchelli A, Barrat A, et al. Random walks on temporal networks. Physical Review E, 2012, 85:056115.
    [144]Masuda N, Klemm K, Eguiluz V M. Temporal networks:Slowing down diffusion by long lasting interactions. Physical Review Letters, 2013, 111:188701.
    [145]Ribeiro B, Perra N, Baronchelli A. Quantifying the effect of temporal resolution on time-varying networks. Scientific Reports, 2013, 3:3006.
    [146]Scholtes I, Wider N, Pfitzner R, Causality-driven slow-down and speed-up of diffusion in nonmarkovian temporal networks. Nature Communications, 2014, 5:5024.
    [147]Li A, Zhou L, Su Q, et al. Evolution of cooperation on temporal networks. arXiv:1609.07569,2018.
    [148]黄琳.稳定性理论.北京:北京大学出版社,1992.(Huang L. Stability Theory. Beijing:Peking University Press, 1992.)
    [149]Lewis F L, Syrmos V L. Optimal Control(2nd Ed.)New York:Wiley, 1995.
    [150]Egerstedt M,Ogren P,Shakernia O, et al. Toward optimal control of switched linear systems.Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, 2000, 1-5:587-592.
    [151]Pasqualetti F, Zampieri S, Bullo F. Controllability metrics, limitations and algorithms for complex networks. IEEE Transactions on Control of Network Systems, 2014, 1:40-52.
    [152]Yan G,Tsekenis G, Barzel B, et al. Spectrum of controlling and observing complex networks.Nature Physics, 2015, 11:779-786.
    [153]Chen Y Z, Wang L Z, Wang W X, et al. Energy scaling and reduction in controlling complex networks. Royal Society Open Science, 2016, 3:1-10.
    [154]Gu S,Betzel R F,Mattar M G,et al. Optimal trajectories of brain state transitions. Neuroimage,2017, 148:305-317.
    [155]Li A, Cornelius S P, Liu Y Y, et al. Control energy scaling in temporal networks. arXiv:1712.06434v1, 2017.
    [156]Lam J, Li Z, Wei Y, et al. Estimates of the spectral condition number. Linear and Multilinear Algebra, 2011, 59:249-260.
    [157]Sun J, Motter A E. Controllability transition and nonlocality in network control. Physical Review Letters, 2013, 110:208701.
    [158]Li A,Wang L,Schweitzer F. The optimal trajectory to control complex networks. arXiv:1806.04229v1, 2018.
    [159]Pósfai M,Hovel P. Structural controllability of temporal networks. New Journal of Physics,2014,16:123055.
    [160]Zhang Y, Garas A, Scholtes I. Controllability of temporal networks:An analysis using higherorder networks. arXiv:1701.06331, 2017.
    [161]Liu X,Lin H,Chen B M. Structural controllability of switched linear systems. Automatica, 2013,49:3531-3537.
    [162]Hou B, Li X, Chen G. Structural controllability of temporally switching networks. IEEE Transactions on Circuits Systems I, Regular Papers, 2016, 63:1771-1778.
    [163]Xie G, Zheng D, Wang L. Controllability of switched linear systems. IEEE Transactions on Automatic Control, 2002, 47:1401-1405.
    [164]Cornelius S P, Kath W L, Motter A E. Realistic control of network dynamics. Nature Communications, 2013, 4:1942.
    [165]Whalen A J, Brennan S N, Sauer T D, et al. Observability and controllability of nonlinear networks:The role of symmetry. Physical Review X, 2015, 5:011005.
    [166]Guo L. On stabilization of switched linear systems. Control and Modeling of Complex Systems,Trends in Mathematics, Boston, Birkhauser, 2003, 199-211.
    [167]Sun Z, Ge S S. Switched Linear Systems:Control and Design. London:Springer-Verlag, 2005.
    [168]Xie G, Wang L. Controllability and stabilizability of switched linear-systems. Systems&Control Letters, 2003, 48:135-155.
    [169]Xie G, Wang L. Necessary and sufficient conditions for controllability and observability of switched impulsive control systems. IEEE Transactions on Automatic Control, 2004, 49:960-966.
    [170]Ji Z, Wang L, Guo X. Design of switching sequences for controllability realization of switched linear systems. Automatica, 2007, 43:662-668.
    [171]王龙,田野,杜金铭.社会网络上的观念动力学.中国科学:信息科学,2018, 48(1):3-23.(Wang L, Tian Y, Du J M. Opinion dynamics in social networks. SCIENTIA SINICA Informationis, 2018, 48(1):3-23.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700