二维配位聚合物衍生的氮掺杂碳/氧化锌纳米复合材料作为高性能的锂离子电池负极材料
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Two Dimensional Coordination Polymer Derived Nitrogen-Doped Carbon/ZnO Nanocomposites as High Performance Anode Material of Lithium-Ion Batteries
  • 作者:温豪 ; 侍昌东 ; 胡瑶 ; 戎红仁 ; 沙彦勇 ; 刘洪江 ; 张汉平 ; 刘琦
  • 英文作者:WEN Hao;SHI Chang-Dong;HU Yao;RONG Hong-Ren;SHA Yan-Yong;LIU Hong-Jiang;ZHANG Han-Ping;LIU Qi;School of Petrochemical Engineering and Jiangsu Key Laboratory of Fine Petro-chemical Technology, Changzhou University;Department of Chemistry, College of Science, Shanghai University;State Key Laboratory of Coordination Chemistry, Nanjing University;
  • 关键词:ZnO ; 氮掺杂碳 ; 纳米颗粒 ; 负极材料 ; 锂离子电池 ; 配位聚合物
  • 英文关键词:zinc oxide;;nitrogen-doped carbon;;nanoparticles;;anode material;;lithium-ion battery;;coordination polymer
  • 中文刊名:WJHX
  • 英文刊名:Chinese Journal of Inorganic Chemistry
  • 机构:常州大学石油化工学院江苏省精细石油化工重点实验室;上海大学理学院化学系;南京大学配位化学国家重点实验室;
  • 出版日期:2019-01-10
  • 出版单位:无机化学学报
  • 年:2019
  • 期:v.35
  • 基金:江苏省高校自然科学研究重大项目(No.16KJA430005);; 江苏省精细石油化工重点实验室开放课题基金资助项目;; 南京大学配位化学国家重点实验室开放课题资助项目;; 江苏省普通高校研究生科研创新计划资助项目(No.SCZ171230023)
  • 语种:中文;
  • 页:WJHX201901005
  • 页数:9
  • CN:01
  • ISSN:32-1185/O6
  • 分类号:60-68
摘要
通过一步煅烧二维锌基配位聚合物[Zn(tfbdc)(4,4′-bpy)(H_2O)_2](H_2tfbdc=四氟对苯二甲酸;4,4′-bpy=4,4′-联吡啶),制备了氮掺杂碳/氧化锌复合纳米粒子(ZnO-N-C)。作为锂离子电池的负极材料,ZnO-N-C电极具有高的可逆容量,优异的循环稳定性和较好的倍率性能。在50 mA·g~(-1)的电流密度下,50次循环后ZnO-N-C电极仍有611 mAh·g~(-1)的可逆容量。
        Nitrogen-doped carbon/ZnO nanoparticles(ZnO-N-C) have been synthesized via an ordinary one-step calcination of a two-dimensional zinc-based coordination polymer [Zn(tfbdc)(4,4′-bpy)(H_2O)_2](H_2tfbdc=tetrafluoroterephthalic acid, 4,4′-bpy=4,4′-bipyridine). As an anode material for lithium-ion batteries, the obtained ZnO-N-C electrode exhibited high reversible capacity, excellent cyclic stability and better rate capability. The reversible capacity of the ZnO-N-C electrode maintains 611 mAh·g~(-1) after 50 cycles at a current density of 50 mA·g~(-1).
引文
[1]Armand M, Tarascon J M. Nature, 2008,451(7179):652-657
    [2]Reddy M V, Subba Rao G V, Chowdari B V R. Chem. Rev.,2013,113(7):5364-5457
    [3]Whittingham M S. Chem. Rev., 2014,114(23):11414-11443
    [4]Obrovac M N, Chevrier V L. Chem. Rev., 2014,114(23):11444-11502
    [5]Wang Z Y, Zhou L, Lou X W. Adv. Mater., 2012,24(14):1903-1911
    [6]Sato K, Noguchi M, Demachi A, et al. Science, 1994,264(5158):556-558
    [7]Zhang G H, Hou S C, Zhang H, et al. Adv. Mater., 2015,27(14):2400-2405
    [8]LIN Jian(林健), CUI Yong-Fu(崔永福), CUI Jin-Long(崔金龙), et al. Chinese J. Inorg. Chem.(无机化学学报), 2018,34(1):33-42
    [9]ZHOU Bu-Yu(周步宇), ZHANG Chun-Yan(张春燕), WU Chang-Hao(吴长昊), et al. Chinese J. Inorg. Chem.(无机化学学报), 2016,32(5):811-817
    [10]CAI Jian-Xin(蔡建信), LI Zhi-Peng(李志鹏), LI Wei(李巍),et al. Chinese J. Inorg. Chem.(无机化学学报), 2017,33(10):1763-1768
    [11]Wu Z S, Ren W C, Wen L, et al. ACS Nano, 2010,4(6):3187-3194
    [12]Yang S J, Nam S, Kim T, et al. J. Am. Chem. Soc., 2013,135(20):7394-7397
    [13]Li B J, Cao H Q, Shao J, et al. Chem. Commun., 2011,47(37):10374-10376
    [14]Jang B, Park M, Chae O B, et al. J. Am. Chem. Soc., 2012,134(36):15010-15015
    [15]Qiu M C, Yang L W, Qi X, et al. ACS Appl. Mater. Interfaces,2010,2(12):3614-3618
    [16]Sun F, Gao J H, Wu H B, et al. Carbon, 2017,113:46-54
    [17]Shen L S, Wang C X. RSC Adv., 2015,5(108):88989-88995
    [18]Shen X Y, Mu D B, Chen S, et al. ACS Appl. Mater.Interfaces, 2013,5(8):3118-3125
    [19]Ahmad M, Shi Y Y, Nisar A, et al. J. Mater. Chem., 2011,21(21):7723-7729
    [20]Li P, Liu Y, Liu J Y, et al. Chem. Eng. J., 2015,271:173-179
    [21]Zhou Z F, Zhang K, Liu J H, et al. J. Power Sources, 2015,285:406-412
    [22]Wang Y Y, Jiang X J, Yang L S, et al. ACS Appl. Mater.Interfaces, 2014,6(3):1525-1532
    [23]Yang G Z, Song H W, Cui H, et al. Nano Energy, 2013,2(5):579-585
    [24]Li N, Jin S X, Liao Q Y, et al. ACS Appl. Mater. Interfaces,2014,6(23):20590-20596
    [25]Sun X, Zhou C G, Xie M, et al. J. Mater. Chem. A, 2014,2(20):7319-7326
    [26]Song W T, Xie J, Liu S Y, et al. Int. J. Electrochem. Sci.,2012,7(3):2164-2174
    [27]Xin S, Guo Y G, Wan L J. Acc. Chem. Res., 2012,45(10):1759-1769
    [28]Zhai Y P, Dou Y Q, Zhao D Y, et al. Adv. Mater., 2011,23(42):4828-4850
    [29]Chen Y M, Lu Z G, Zhou L M, et al. Energy Environ. Sci.,2012,5(7):7898-7902
    [30]Ming H, Ming J, Li X W, et al. RSC Adv., 2013,3(36):15613-15617
    [31]Zhang D Y, Zheng L W, Ma Y, et al. ACS Appl. Mater.Interfaces, 2014,6(4):2657-2665
    [32]Chen J Z, Yang L, Fang S H, et al. Electrochim. Acta, 2014,127(5):390-396
    [33]Ding Z J, Zhao L, Suo L M, et al. Phys. Chem. Chem. Phys.,2011,13(33):15127-15133
    [34]Salunkhe R R, Tang J, Kamachi Y, et al. ACS Nano, 2015,9(6):6288-6296
    [35]Cao X H, Zheng B, Shi W H, et al. Adv. Mater., 2015,27(32):4695-4701
    [36]You B, Jiang N, Sheng M L, et al. Chem. Mater., 2015,27:7636-7642
    [37]Wu R B, Wang D P, Rui X H, et al. Adv. Mater., 2015,27(19):3038-3044
    [38]Peng Y, Li Y S, Ban Y J, et al. Science, 2014,346(6215):1356-1359
    [39]Liu Q, Yu L L, Wang Y, et al. Inorg. Chem., 2013,52(6):2817-2822
    [40]Shi C D, Xia Q H, Xue X, et al. RSC Adv., 2016,6(6):4442-4447
    [41]Liu X X, Shi C D, Zhai C W, et al. ACS Appl. Mater.Interfaces, 2016,8(7):4585-4591
    [42]Shi C D, Gao Y R, Liu L L, et al. J. Nanopart. Res., 2016,18(12):371-380
    [43]Shi C D, Wang X M, Gao Y R, et al. J. Solid State Electrochem.,2017,21(8):2415-2423
    [44]Zhao M T, Lu Q P, Ma Q L, et al. Small Methods, 2017,1(1/2):1600030-1600038
    [45]Wu F F, Zhang S S, Xi B J, et al. Adv. Energy Mater., 2018,8(13):1703242-1703249
    [46]YU Li-Li(于丽丽). Thesis for the Master Degree of Jiangsu Polytechnic University(江苏工业学院硕士论文). 2010.
    [47]QUAN Wei-Lei(全微雷), ZHANG Jin-Min(张金敏), SHEN Jun-Hai(沈俊海), et al. Chinese J. Inorg. Chem.(无机化学学报), 2015,31(8):1626-1636
    [48]LIU Shi-Hong(刘世宏), WANG Dang-Han(王当憨), PAN Cheng-Huang(潘承璜). Analysis of X-Ray Photoelectron Spectroscopy(X射线光电子能谱分析). Beijing:Science Press, 1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700