TDLAS技术在微生物(生长)检测领域研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress of microbial monitoring(growth) based on TDLAS technology
  • 作者:付美娟 ; 张逸彪 ; 黄瑜倩 ; 邵杰
  • 英文作者:FU Meijuan;ZHANG Yibiao;HUANG Yuqian;SHAO Jie;Institute of Information Optics, Zhejiang Normal University;Zhejiang Jinhua Guangfu Hospital;
  • 关键词:光谱学 ; 可调谐半导体二极管激光吸收光谱技术 ; 微生物检测 ; 血培养 ; CO_2检测
  • 英文关键词:spectroscopy;;tunable diode laser absorption spectroscopy technology;;microbial monitoring;;blood culture;;CO_2 detection
  • 中文刊名:LDXU
  • 英文刊名:Chinese Journal of Quantum Electronics
  • 机构:浙江师范大学信息光学研究所;浙江金华广福医院;
  • 出版日期:2019-03-15
  • 出版单位:量子电子学报
  • 年:2019
  • 期:v.36;No.187
  • 基金:国家自然科学基金,61775197,61275154;; 浙江省基础公益研究计划项目,2017C33232~~
  • 语种:中文;
  • 页:LDXU201902001
  • 页数:8
  • CN:02
  • ISSN:34-1163/TN
  • 分类号:3-10
摘要
微生物检测在医疗诊断、食品安全、发酵工程、微生物科学研究等方面具有重要意义。微生物检测主要体现两个方面:微生物的判断和微生物生长曲线的测量。微生物的生长通常伴随着一系列与生长量相平行的DNA、酸碱度等生理指标和CO_2、光学厚度等产物指标,这些指标为微生物检测提供了测量途径。其中,通过检测微生物代谢产物CO_2,不仅可以排除死菌带来的干扰,而且能够实现快速、全自动检测,成为微生物检测的主要途径之一。可调谐半导体二极管激光吸收光谱技术(TDLAS)以其在测量CO_2的灵敏度高、结构简单、技术成熟等优势,为微生物检测提供一种快速、非侵入的新检测途径,对推动微生物检测技术的发展具有重要的意义。介绍了近几年TDLAS技术及其在微生物(生长)检测领域应用取得的进展。
        Microbial monitoring plays a key role in a wide range of fields spanning from medical diagnosis and food safety to fermentation and microbiological research. Microbial monitoring mainly include two aspects:the judgment of microorganisms and the measurement of the growth curve of microorganisms. Microbial growth usually correlate directly with certain indicators, such as DNA, pH, CO_2 and OD, which provide a way for microbial monitoring. Among them, CO_2 measurements have become the preferred approach because they prevent the interference of the dead bacteria and provide a more rapid and automatic answer. TDLAS technology has demonstrated high sensitivity, while being a simple yet mature technological structure for the detection of CO_2 to provide a rapid and non-intrusive technique for microbial monitoring. It is of great significance to promote a new approach for monitor microorganisms. Progress of TDLAS technology in the field of microbial monitoring(growth) in recent years are reviewed.
引文
[1] Li Y Q, Demerjian K L, Zahniser M S, et al. Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system[J]. Journal of Geophysical Research Atmospheres,2004, 109(D16):1-11.
    [2] Biswas P, Karn A K, et al. Biosensor for detection of dissolved chromium in potable water:A review[J]. Biosensors and Bioelectronics, 2017, 94:589-604.
    [3] Brunker J, Beard P. Velocity measurements in whole blood using acoustic resolution photoacoustic Doppler[J].Biomedical Optics Express, 2016, 7(7):2789-2806.
    [4] Sinjab F, Kong K, Gibson G, et al. Tissue diagnosis using power-sharing multifocal Raman micro-spectroscopy and auto-fluorescence imaging[J]. Biomedical Optics Express, 2016, 7(8):2993-3006.
    [5] Korzh B, Ke D, Boso G, et al. Time-resolved singlet-oxygen luminescence detection with an efficient and practical semiconductor single-photon detector[J]. Biomedical Optics Express,2015, 7(1):211-224.
    [6] Brueckner D, Roesti D, Zuber U, et al. Tunable diode laser absorption spectroscopy as method of choice for non-invasive and automated detection of microbial growth in media fills[J]. Talanta, 2017, 167:21-29.
    [7] Brueckner D, Roesti D, Zuber U G, et al. Comparison of Tunable Diode Laser Absorption Spectroscopy and Isothermal Micro-calorimetry for Non-invasive Detection of Microbial Growth in Media Fills[J]. Scientific Reports,2016, 6(27894):1-9.
    [8] Brueckner D, Krahenbuhl S, Zuber U, et al. An alternative sterility assessment for parenteral drug products using isothermal microcalorimetry[J]. Journal of Applied Microbiology, 2017, 123(3):773-779.
    [9] Chandler J E, Cherkezyan L, Subramanian H, et al. Nanoscale refractive index fluctuations detected via sparse spectral microscopy[J]. Biomedical Optics Express, 2016, 7(3):883-893.
    [10] Nasseri N, Kleiser S, Ostojic D, et al.Quantifying the effect of adipose tissue in muscle oximetry by near infrared spectroscopy[J]. Biomedical Optics Express, 2016, 7(11):4605-4619.
    [11] Menyaev Y A, Kai A C, Nedosekin D A, et al. Preclinical photoacoustic models:application for ultrasensitive single cell malaria diagnosis in large vein and artery[J]. Biomedical Optics Express, 2016, 7(9):3643-3658.
    [12] Lim C M, Lin K, Zheng W, et al. Real-time in vivo diagnosis of laryngeal carcinoma with rapid fiber-optic Raman spectroscopy[J]. Biomedical Optics Express, 2016,7(9):3705-3715.
    [13] Ikehata A, Momose A, Miura M, et al. Identification of informative bands in the short-wavelength NIR region for non-invasive blood glucose measurement[J].Biomedical Optics Express,2016,7(7):2729-2737.
    [14] Bok T H, Hysi E, Kolios M C. Simultaneous assessment of red blood cell aggregation and oxygen saturation under pulsatile flow using high-frequency photoacoustics[J]. Biomedical Optics Express,2016, 7(7):2769-2780.
    [15] Zhao Y, Pogue B W, Haider S J, et al. Portable, parallel 9-wavelength near-infrared spectral tomography(NIRST)system for efficient characterization of breast cancer within the clinical oncology infusion suite[J]. Biomedical Optics Express, 2016, 7(6):2186-2201.
    [16] Brueckner D, Solokhina A, Krahenbuhl S, et al. A combined application of tunable diode laser absorption spectroscopy and isothermal micro-calorimetry for calorespirometric analysis[J]. Journal of Microbiological Methods,2017, 139:210-214.
    [17] Shao J, Xiang J, Axner O, et al. Wavelength-modulated tunable diode-laser absorption spectrometry for real-time monitoring of microbial growth[J]. Applied Optics, 2016, 55(9):2339-2345.
    [18] Buda F, Keijer T, Ganapathy S, et al. A Quantum-mechanical Study of the Binding Pocket of Proteorhodopsin:Absorption and Vibrational Spectra Modulated by Analogue Chromophores[J]. Photochemistry&Photobiology,2017,93(6):1399-1406.
    [19] Hall S J, Huang W, Hammel K E. An optical method for carbon dioxide isotopes and mole fractions in small gas samples:Tracing microbial respiration from soil, litter, and lignin[J]. Rapid Communications in Mass Spectrometry, 2017, 31(22):1938-1946.
    [20] Brzozowska E, Koba M, Smietana M, et al. Label-free Gram-negative bacteria detection using bacteriophageadhesin-coated long-period gratings[J]. Biomedical Optics Express, 2016, 7(3):829-840.
    [21] Weiss N, Obied K E T E, Kalkman J, et al. Measurement of biofilm growth and local hydrodynamics using optical coherence tomography[J]. Biomedical Optics Express, 2016, 7(9):3508-3518.
    [22] Glemser M, Heining M, Schmidt J, et al. Application of light-emitting diodes(LEDs)in cultivation of phototrophic microalgae:current state and perspectives[J]. Applied Microbiological Biotechnology, 2016, 100(3):1077-1088.
    [23] Solokhina A, Bruckner D, Bonkat G, et al. Metabolic activity of mature biofilms of Mycobacterium tuberculosis and other non-tuberculous mycobacteria[J]. Scientific Reports, 2017, 7(1):9225-9232.
    [24] Lazcka O, Del Campo F J, Mua±Oz F X. Pathogen detection:a perspective of traditional methods and biosensors[J]. Biosensors&Bioelectronics, 2007, 22(7):1205-1217.
    [25] Xing K, Yang K, Zhang L, et al. Simultaneous detection of CO and C02 in cigarette mainstream smoke based on TDLAS technolog[J]. Chinese Journal of Quantum Electronics(量子电子学报),2017,34(1):81-87.
    [26] Yu C, Wang X, Qi M, et al. Application of spectral and spectral imaging technology in biomedicine[J]. Chinese Journal of Quantum Electronics(量子电子学报),2015, 32(6):641-647.
    [27] Mcbirney S E, Trinh K, Wong-Beringer A, et al. Wavelength-normalized spectroscopic analysis of Staphylococcus aureus and Pseudomonas aeruginosa growth rates[J].Biomedical Optics Express,2016,7(10):4034-4042.
    [28] Maqbool T, Cho J, Hur J. Spectroscopic descriptors for dynamic changes of soluble microbial products from activated sludge at different biomass growth phases under prolonged starvation[J]. Water Research,2017, 123:751-760.
    [29] Zhong N, Zhao M, Li Y. U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring[J].Biomedical Optics Express, 2016, 7(2):335-351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700