氧化石墨烯在不同盐度水体中的聚沉行为研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on sedimentation of graphene oxide in aqueous matrices with different salinity
  • 作者:张楠楠 ; 丁光辉 ; 李雪瑶 ; 刘全斌 ; 薛欢欢 ; 崔福旭 ; 张晶
  • 英文作者:ZHANG Nan-nan;DING Guang-hui;LI Xue-yao;LIU Quan-bin;XUE Huan-huan;CUI Fu-xu;ZHANG Jing;College of Environmental Science and Engineering,Dalian Maritime University;College of Environment and Chemical Engineering,Dalian University;
  • 关键词:氧化石墨烯 ; 盐度 ; 聚沉 ; pH
  • 英文关键词:graphene oxide;;salinity;;sedimentation;;pH
  • 中文刊名:HYHJ
  • 英文刊名:Marine Environmental Science
  • 机构:大连海事大学环境科学与工程学院;大连大学环境与化工学院;
  • 出版日期:2019-03-13
  • 出版单位:海洋环境科学
  • 年:2019
  • 期:v.38;No.175
  • 基金:国家自然科学基金(51479016,51308083);; 辽宁省博士科研启动基金(20170520368)
  • 语种:中文;
  • 页:HYHJ201902011
  • 页数:6
  • CN:02
  • ISSN:21-1168/X
  • 分类号:81-86
摘要
研究氧化石墨烯(GO)的水环境行为对于阐明其生态风险具有重要意义。本文将GO分散于不同盐度的水体中,研究了GO在水环境中的分散稳定性及聚沉行为。结果表明,GO能够均匀分散于去离子水中,且降低溶液的pH。随着静置时间的延长,GO产生缓慢聚沉。随分散水体盐度增加,GO溶液的聚沉速率快速增加,聚沉颗粒粒径明显增加;当水体盐度达到8~10后,GO溶液的聚沉速率趋于理想状态下的快速聚沉速率。GO在不同盐度海水中的聚沉服从经典的胶体稳定性理论,其聚集效率随盐度的增加呈现两阶段过程。由此计算出2~100 mg/L的GO溶液的临界团聚盐度为6. 79~11. 84。由此可见,较稳定分散于淡水水体的GO可能对淡水生物产生较高的生态风险,而在海水中易于聚沉的GO可能对近海底栖生物存在较高的生态风险。
        The study on the behavior of graphene oxide( GO) in the aqueous environment is very significant for its ecological risk assessment. In the present study,GO was dispersed in water with different salinity in order to investigate its dispersion stability and sedimentation. The results indicated that GO could be uniformly dispersed in deionized water that caused the decrease of the pH of the solution. With the extension of the settling time,GO still deposited slowly. With the increasing salinity of water,the sedimentation of GO became more serious and the size of aggregates increased obviously. When the salinity of water was higher than 8 ~ 10,the sedimentation rate of GO approached the fastest sedimentation rate at the favorable conditions. The sedimentation of GO in water with different salinity exhibited two processes,which was consistent with the classic Derjaguin-Landau-Verwey-Overbeek theory of colloidal stability.The calculated Critical Coagulation Salinity values were 6. 79 ~ 11. 84 for GO solutions with the concentration range of2 to 100 mg/L. Therefore,GO stably dispersed in the freshwater might have a higher exposure risk to aquatic organisms living in the upper water column,whereas GO easily deposited in seawater might pose a higher exposure risk to benthic organisms.
引文
[1]DREYER D R,PARK S,BIELAWSKI C W,et al. The chemistryof graphene oxide[J]. Chemical Society Reviews,2010,39(1):228-240.
    [2]KONKENA B,VASUDEVAN S. Understanding aqueous dispers-ibility of graphene oxide and reduced graphene oxide through p Kameasurements[J]. The Journal of Physical Chemistry Letters,2012,3(7):867-872.
    [3]CHEN D,FENG H B,LI J H. Graphene oxide:preparation,func-tionalization,and electrochemical applications[J]. Chemical Re-views,2012,112(11):6027-6053.
    [4]HORVTH L,MAGREZ A,BURGHARD M,et al. Evaluation ofthe toxicity of graphene derivatives on cells of the lung luminalsurface[J]. Carbon,2013,64:45-60.
    [5]AKHAVAN O,GHADERI E. Toxicity of graphene and grapheneoxide nanowalls against bacteria[J]. ACS Nano,2010,4(10):5731-5736.
    [6]GUDARZI M M. Colloidal stability of graphene oxide:aggregationin two dimensions[J]. Langmuir,2016,32(20):5058-5068.
    [7]JIANG Y,RALIYA R,FORTNER J D,et al. Graphene oxides inwater:correlating morphology and surface chemistry with aggrega-tion behavior[J]. Environmental Science&Technology,2016,50(13):6964-6973.
    [8]SHIH C J,LIN S C,SHARMA R,et al. Understanding the p H-de-pendent behavior of graphene oxide aqueous solutions:a compara-tive experimental and molecular dynamics simulation study[J].Langmuir,2012,28(1):235-241.
    [9]YANG K J,CHEN B L,ZHU X Y,et al. Aggregation,adsorption,and morphological transformation of graphene oxide in aqueoussolutions containing different metal cations[J]. EnvironmentalScience&Technology,2016,50(20):11066-11075.
    [10]HUA Z L,TANG Z Q,BAI X,et al. Aggregation and resuspen-sion of graphene oxide in simulated natural surface aquatic envi-ronments[J]. Environmental Pollution,2015,205:161-169.
    [11]CHOWDHURY I,HOU W C,GOODWIN D,et al. Sunlight af-fects aggregation and deposition of graphene oxide in the aquaticenvironment[J]. Water Research,2015,78:37-46.
    [12]ZHAO J,LIU F F,WANG Z Y,et al. Heteroaggregation of gra-phene oxide with minerals in aqueous phase[J]. EnvironmentalScience&Technology,2015,49(5):2849-2857.
    [13]MARKUS A A,PARSONS J R,ROEX E W M,et al. Modelingaggregation and sedimentation of nanoparticles in the aquatic en-vironment[J]. Science of the Total Environment,2015,506/507:323-329.
    [14] WU L,LIU L,GAO B,et al. Aggregation kinetics of grapheneoxides in aqueous solutions:experiments,mechanisms,and mod-eling[J]. Langmuir,2013,29(49):15174-15181.
    [15]SZABT,TOMBCZ E,ILLS E,et al. Enhanced acidity andpH-dependent surface charge characterization of successively ox-idized graphite oxides[J]. Carbon,2006,44(3):537-545.
    [16]SU Y,YANG G Q,LU K,et al. Colloidal properties and stabilityof aqueous suspensions of few-layer graphene:importance of gra-phene concentration[J]. Environmental Pollution,2017,220:469-477.
    [17]CHOWDHURY I,MANSUKHANI N D,GUINEY L M,et al.Aggregation and stability of reduced graphene oxide:complexroles of divalent cations,p H,and natural organic matter[J]. En-vironmental Science&Technology, 2015, 49(18):10886-10893.
    [18]谢森扬,王翠,王金坑,等.基于EFDC的九龙江口-厦门湾三维潮流及盐度数值模拟研究[J].水动力学研究与进展,2016,31(1):63-75.
    [19]孙刚.辽河口盐度分布及潮区界、潮流界的数值研究[D].青岛:中国海洋大学,2011.
    [20]WHITBY R L D,GUN’KO V M,KOROBEINYK A,et al. Driv-ing forces of conformational changes in single-layer graphene ox-ide[J]. ACS Nano,2012,6(5):3967-3973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700