寒温带兴安落叶松林土壤细菌微生物量和群落组成研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on soil microbial biomass and community composition of Larix gmelinii in cold temperate zone
  • 作者:杨立宾 ; 隋心 ; 朱道光 ; 崔福星 ; 李金博 ; 宋瑞清 ; 倪红伟
  • 英文作者:YANG Libin;SUI Xin;ZHU Daoguang;CUI Fuxing;LI Jinbo;SONG Ruiqing;NI Hongwei;Institute of Nature & Ecology, Heilongjiang Academy of Sciences;Northeast Forestry University, Forestry Institute;College of Life Sciences, Heilongjiang University;
  • 关键词:寒温带 ; 兴安落叶松 ; 土壤细菌 ; 磷脂脂肪酸 ; 群落结构
  • 英文关键词:cold temperate zone;;Larix gmelinii;;soil bacteria;;PLFAs;;community structure
  • 中文刊名:ZNLB
  • 英文刊名:Journal of Central South University of Forestry & Technology
  • 机构:黑龙江省科学院自然与生态研究所;东北林业大学林学院;黑龙江大学生命学院;
  • 出版日期:2018-07-23 10:43
  • 出版单位:中南林业科技大学学报
  • 年:2018
  • 期:v.38;No.206
  • 基金:国家自然科学基金项目(31600396/31570486);; 黑龙江省科学院学科领域创新能力提升专项(XKLY2018ZR01);; 黑龙江省院所基本应用技术研究专项(ZNBZ2018ZR02/YY2018ZR02/ZNBZ2017ZR03)
  • 语种:中文;
  • 页:ZNLB201808012
  • 页数:9
  • CN:08
  • ISSN:43-1470/S
  • 分类号:73-81
摘要
为了研究不同林型兴安落叶松林土壤细菌微生物量和土壤细菌群落结构特征,探讨微生物量和群落组成变化的分布规律及影响因子,选择了4个典型兴安落叶松林:藓类兴安落叶松林、杜香兴安落叶松林、草类兴安落叶松林和杜鹃兴安落叶松林,采用磷脂脂肪酸(PLFAs)和高通量测序的方法,分析了4个林型土壤细菌的微生物量和群落组成。结果表明:PLFA法检测出4个林型中C12~C20 8种类型共44种不完全分布的PLFAs生物标记,4个林型中的兴安落叶松林细菌生物量最高,草类兴安落叶松林最低;高通量共检测出19门35纲55目87科92属细菌,其中变形菌纲Alphaproteobacteria、γ-变形菌纲Gammaproteobacteria、酸杆菌纲Acidobacteria、β变形菌纲Betaproteobacteria、放线菌纲Actinobacteria丰度较高。通过冗余分析分析发现,有效磷对土壤细菌生物量的影响较大,土壤pH值、土壤含水率和土壤养分对土壤细菌的群落组成影响比较明显。本研究表明寒温带兴安落叶松林中不同土壤环境的土壤细菌微生物量和群落组成存在差异,且与土壤环境因子之间具有相关性。
        In order to study the distribution characterizes and influencing factors of soil microbial biomass and soil bacterial community structure in different Larix gmelinii forest types, we analyzed the soil bacterial biomass and community structure of four different Larix gmelinii forest types: mosses-Larix gmelinii forest, Ledum palustre-Larix gmelinii forest, grass-Larix gmelinii forest and Rhododendron dauriczcm-Larix gmelinii forest by using the phospholipid fatty acids and high-throughput sequencing. The result showed that a total of 44 species belong to 8 types(C12-C20), which were no-fully distributions PLFA biomarker types, were detected in this study, of which Larix gmelinii forest was highest and grass-Larix gmelinii forest was lest. Moreover, 92 genus, 87 families, 55 orders, 35 classes and 19 phylum were investigated, in those, the more abundance were Alphaproteobacteria, Gammaproteobacteria, Acidobacteria and Betaproteobacteria. The results showed that there were no significant differences between the two groups(P < 0.05) Actinobacteria has a higher abundance. The redundancy analysis indicated that available phosphor was key factor to affect the soil bacterial biomass, but soil pH, soil moisture and nutrition were key factors to affect the soil bacterial community structures. This study showed that there were significant different in the soil bacterial biomass and community structure between different Larix gmelinii forest types, and were correlated with soil environmental factors.
引文
[1]隋心,张荣涛,钟海秀,等.利用高通量测序对三江小叶章湿地土壤细菌多样性的研究[J].土壤,2015,47(5):919-925.
    [2]周国英,陈小艳,李倩茹,等.油茶林土壤微生物生态分布及土壤酶活性的研究[J].经济林研究,2001,19(1):9-12.
    [3]Lagomarsino A,Moscatelli M C,Tizio A D,et al.Soil biochemical indicators as a tool to assess the short-term impact of agricultural management on changes in organic C in a Mediterranean environment[J].Ecological Indicators,2009,9(3):518-527.
    [4]Handelsman J,Rondon M R,Brady S F,et al.Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products[J].Chemistry&Biology,1998,5(10):245.
    [5]陈秀荣,南志标.细菌多样性及其在农业生态系统中的作用[J].草业科学,2002,19(12):34-38.
    [6]隋心,张荣涛,杨立宾,等.三江平原不同类型小叶章湿地土壤细菌群落功能多样性[J].环境科学,2016,29(10):1479-1486.
    [7]Corstanje R,Reddy K R,Prenger J P,et al.Soil microbial ecophysiological response to nutrient enrichment in a sub-tropical wetland[J].Ecological Indicators,2007,7(2):277-289.
    [8]Wright A L,Reddy K R,Corstanje R.Patterns of heterotrophic microbial activity in eutrophic and oligotrophic peatlands.[J].European Journal of Soil Biology,2009,45(2):131-137.
    [9]Grayston S J,Griffith G S,Mawdsley J L,et al.Accounting for variability in soil microbial communities of temperate upland grassland ecosystems.[J].Soil Biology&Biochemistry,2001,33(4–5):533-551.
    [10]杨菁,周国英,田媛媛,等.降香黄檀不同混交林土壤细菌多样性的差异分析[J].生态学报,2015,35(24):1-11.
    [11]Levett D,Middleton P,Cole M,et al.Carbon cycling of alpine tundra ecosystems on Changbai Mountain and its comparison with arctic tundra.Science in China Earth Sciences,2002,45(10):903-910.
    [12]高永刚,赵慧颖,高峰,等.大兴安岭区域未来气候变化趋势及其对湿地的影响[J].冰川冻土,2016,38(1):47-56.
    [13]肖生苓,杨嘉龙.大兴安岭北部兴安落叶松天然林单木地上生物量[J].林业科学,2014,50(8):22-29.
    [14]魏亚伟,周旺明,周莉,等.兴安落叶松天然林碳储量及其碳库分配特征[J].生态学报,2015,35(1):0189-0195.
    [15]Bossio D A,Scow K M.Impacts of Carbon and Flooding on Soil Microbial Communities:Phospholipid Fatty Acid Profiles and Substrate Utilization Patterns[J].Microbial Ecology,1998,35(3-4):265-278.
    [16]刘波,胡桂萍,郑雪芳,等.利用磷脂脂肪酸(PLFAs)生物标记发分析水稻根际土壤微生物多样性[J].中国水稻科学,2010,24(3):278-288.
    [17]隋心,张荣涛,杨立宾,等.应用PLFA技术分析氮沉降对三江平原小叶章湿地土壤微生物群落结构的影响[J].中南林业科技大学学报,2016,36(12):91-97.
    [18]Logares R,Haverkamp T H,Kumar S,et al.Environmental microbiology through the lens of high-throughput DNA sequencing:synopsis of current platforms and bioinformatics approaches.[J].Journal of Microbiological Methods,2012,91(1):106-113.
    [19]井赵斌,程积民,张宝泉,等.基于454焦磷酸测序法的典型草原土壤真核生物多样性[J].草业科学,2013,11(30):1690-1697.
    [20]杨君珑,付晓莉,马泽清,等.中亚热带5种类型森林土壤微生物群落特征[J].环境科学研究,2015,28(5):720-727.
    [21]Wardle D A.The influence of biotic interactions on soil biodiversity.[J].Ecology Letters,2006,9(7):870-86.
    [22]Schimel J P,Gulledge J M,Clein-Curley J S,et al.Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga[J].Soil Biology&Biochemistry,1999,31(6):831-838.
    [23]韩世忠,高人,李爱萍,等.中亚热带地区两种森林植被类型土壤微生物群落结构[J].应用生态学报,2015,26(7):2151-2158.
    [24]Ulery A L,Graham R C,Chadwick O A,et al.Decade-scale changes of soil carbon,nitrogen and exchangeable cations under chaparral and pine[J].Geoderma,1995,65(1–2):121-134.
    [25]Zhang B,Liang C,He H,et al.Variations in Soil Microbial Communities and Residues Along an Altitude Gradient on the Northern Slope of Changbai Mountain,China[J].Plos One,2013,8(6):e66184.
    [26]A.Frosteg?rd,E.B??th.The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil[J].Biology&Fertility of Soils,1996,22(1-2):59-65.
    [27]Blagodatskaya E V,Anderson T H.Interactive effects of p H and substrate quality on the fungal-to-bacterial ratio and q CO2,of microbial communities in forest soils[J].Soil Biology&Biochemistry,1998,30(10–11):1269-1274.
    [28]Ingwersen J,Poll C,Streck T,et al.Micro-scale modelling of carbon turnover driven by microbial succession at a biogeochemical interface[J].Soil Biology&Biochemistry,2008,40(4):864-878.
    [29]林英华,卢萍,赵鲁安,等.大兴安岭森林沼泽类型与火干扰对土壤微生物群落影响[J].林业科学研究,2016,29(1):93-102.
    [30]Carrasco L,Gattinger A,Fliessbach A,et al.Estimation by PLFA of microbial community structure associated with the rhizosphere of Lygeum spartum and Piptatherum miliaceum growing in semiarid mine tailings.[J].Microbial Ecology,2010,60(2):265.
    [31]Opelt K,Berg C,Sch?nmann S,et al.High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region[J].Isme Journal,2007,1(6):502.
    [32]Cassiel H,Janee S,Kermit C.Invasive plant species and soil microbial response to wildfire burn severity in the Cascade Range of Oregon[J].Applied Soil Ecology,2009,42(2):150-159.
    [33]Janssen P H.Identifying the dominant soil bacterial taxa in libraries of 16S r RNA and 16S r RNA genes.[J].Applied&Environmental Microbiology,2006,72(3):1719-1728.
    [34]Shen C,Xiong J,Zhang H,et al.Soil p H drives the spatial distribution of bacterial communities along elevation on Changbai Mountain[J].Soil Biology&Biochemistry,2013,57(00):204-211.
    [35]白晓旭,史荣久,尤业明,等.河南宝天曼不同林龄与林型森林土壤的细菌群落结构与多样性[J].应用生态学报,2015,26(8):2273-2281.
    [36]Nacke H,Thürmer A,Wollherr A,et al.Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils[J].Plos One,2011,6(2):e17000.
    [37]Roesch L F W,Fulthorpe R R,Riva A,et al.Pyrosequencing enumerates and contrasts soil microbial diversity[J].Isme Journal,2007,1(4):283.
    [38]Zhang T,Shao M F,Ye L.454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants[J].Isme Journal,2012,6(6):1137.
    [39]李鑫,焦燕,代钢,等.内蒙古河套灌区不同盐碱程度的土壤细菌群落多样性[J].中国环境科学,2016,36(1):249-260.
    [40]Liu J,Sui Y,Yu Z,et al.High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J].Soil Biology&Biochemistry,2014,70(2):113-122.
    [41]Liu W,Zhu J,Jia Q,et al.Carbon Sequestration Effects of Shrublands in Three-North Shelterbelt Forest Region,China[J].Chinese Geographical Science,2014,24(4):444-453.
    [42]于洋,王海燕,丁国栋,等.华北落叶松人工林土壤微生物数量特征及其与土壤性质的关系[J].东北林业大学学报,2011,39(3):76-80.
    [43]黄志宏,田大伦,梁瑞友,等.南岭不同林型土壤微生物数量特征分析[J].中南林业科技大学学报,2007,27(3):1-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700