火干扰对寒温带落叶松—泥炭藓沼泽生长季CO_2排放的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fire disturbance effects on CO_2 emission of Larix gmelinii-Sphagnum bog in cold temperate zone
  • 作者:崔福星 ; 朱道光 ; 杨立宾 ; 柴春荣
  • 英文作者:CUI Fu-xing;ZHU Dao-guang;YANG Li-bin;CHAI Chun-rong;Institute of Natural Resources and Ecology,Heilongjiang Academy of Sciences;
  • 关键词:火干扰 ; 落叶松—泥炭藓沼泽 ; CO2排放
  • 英文关键词:Fire disturbance;;Larch Sphagnum swamp;;CO2 emission
  • 中文刊名:HELJ
  • 英文刊名:Heilongjiang Science
  • 机构:黑龙江省科学院自然与生态研究所;
  • 出版日期:2018-11-23
  • 出版单位:黑龙江科学
  • 年:2018
  • 期:v.9;No.137
  • 基金:国家自然科学基金资助项目(31570486);; 黑龙江省院所基本应用技术研究专项(ZNBZ2018ZR02)
  • 语种:中文;
  • 页:HELJ201822002
  • 页数:4
  • CN:22
  • ISSN:23-1560/G3
  • 分类号:10-13
摘要
2014年4—10月在大兴安岭呼中国家级自然保护区,运用静态箱—气相色谱法,对火灾后寒温带落叶松—泥炭藓沼泽CO_2生长季排放通量特征进行研究。结果表明:火烧对落叶松—泥炭藓沼泽生长季不同深度土壤温度有明显影响,并使得土壤含水率显著降低。火烧(M1)与对照(M0)样地落叶松—泥炭藓沼泽CO_2生长季平均排放通量分别为63. 02±10. 54、41. 85±6. 81 mg·m~(-2)·h~(-1)。M0与M1样地生长季CO_2排放通量变化均呈先升后降趋势变化,M0样地生长季CO_2排放通量峰值出现在6月份(74. 83±12. 38mg·m~(-2)·h~(-1)),M1样地CO_2排放通量峰值出现在7月份(100. 82±17. 58 mg·m~(-2)·h~(-1))。M0对照样地生长季CO_2排放通量与相应5、10、20 cm土壤温度,土壤含水率相关性均不显著。M1样地CO_2排放通量与5 cm土壤温度呈显著正相关,与10、20 cm土壤温度相关性不显著,与土壤含水率呈显著负相关。
        CO_2 emission of Larix gmelinii-sphagnum bog in cold temperate zone after fire was determined in 2014 growing season in HuZhong National Nature Reserve of Greater Khingan Mountain by static box-gas chromatography method. Results as follows: Fire had obvious effects on the temperature of different depth soil,and soil water content was reduced in growing season. In growing season,the average CO_2 emission flux of Larix gmelinii-sphagnum bog between fire disturbed( M1) and natural Control( M0) plots were 63. 02 ± 10. 54,41. 85 ± 6. 81 mg·m~(-2)·h~(-1),respectively. The both of CO_2 change flux between M0 and M1 plot showed a similar curve pattern,CO_2 flux reached the peak at June in the M0 plot( 74. 83 ± 12. 38 mg·m~(-2)·h~(-1)),and at July in M1 plot( 100. 82 ± 17. 58 mg·m~(-2)·h~(-1)).There was no significant relation between CO_2 emission flux and soil water content,and 5 cm,10 cm,20 cm soil temperature in M0 plot. There was a significant positive relation between CO_2 emission flux and 5 cm soil temperature,and an obvious negative relation with soil water content in M1 plot.
引文
[1] Bubier J L,Bhatia G,Moore T R,Roulet N T,Lafleur P M. Spatial and temporal variability in growing-season net ecosystem carbon dioxide exchange at a large Peatland in Ontario,Canada[J]. Ecosystems,2003,6(4):353-367.
    [2]宋长春,张丽华,王毅勇,等.淡水沼泽湿地CO2、CH4和N2O排放通量年际变化及其对氮输入的响应[J].环境科学,2006,27(12):2369-2375.
    [3] Rastogi M,Singh S,Pathak H. Emission of carbon dioxide from soil[J]. Current Science,2002,82(5):510-517.
    [4]宋长春.湿地生态系统碳循环研究进展[J].地理科学,2003,23(5):622-628.
    [5]李海防,夏汉平,熊燕梅,等.土壤温室气体产生与排放影响因素研究进展[J].生态环境,2007,16(6):1781-1788.
    [6] Poungparn S,Komiyama A,Tanaka A,et al. Carbon dioxide emission through soil respiration in a secondary mangrove forest of eastern Thailand[J]. J Trop Ecol,2009,(25):393-400.
    [7] O'Neill K P,Kasischke E S,Richter D D. Seasonal and decadal patterns of soil carbon uptake and emission along an age sequence of burned black spruce stands in interior Alaska[J]. Journal of Geophysical Research,2003,(108):8155-8170.
    [8] Kasischke E S,French N H F. Constraints on using AVHRR composite index imagery to study patterns of vegetation cover in boreal forests[J].International Journal of Remote Sensing,1997,18(11):2403-2426.
    [9] Richter D D,O'Neil K P,Kasischke E S. Postfire stimulation of microbial decomposition in black spruce(Picea mariana L.)forest soils:a hypothesis Fire,Climate Change and Carbon Cycling in North American Boreal Forests,Ecological Studies Series[M]. New York:Springer,2000:197-213.
    [10] Alongi D M,Trott L,APfitzner J. Deposition,mineralization,and storage of carbon and nitrogen in sediments of the far northern and northern Great Barrier Reef shelf[J]. Continental Shelf Research,2007,27(20):2595-2622.
    [11] Hicke J A,Asner G P,Kasischke E S,French N H F,Randerson J T,James C G,Stocks B J,Tucker C J,Los S O,Field C B. Postfire response of North American boreal forest net primary productivity analyzed with satellite observations[J]. Global Change Biology,2003,9(8):1145-1157.
    [12] Rapalee G,Trumbore S E,Davidson E A,Harden J W,Veldhuis H.Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape[J]. Global Biogeochemical Cycles,1998,12(4):687-701.
    [13] Wang Y S. Chamber methods for measuring carbon exchange in earth system[M]. Beijing:Science Press,2004:130-145.
    [14] Singh J S,Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems[J]. The Botanical Review,1977,43(4):449-529.
    [15]牟长城,张博文,韩丽冬,等.火干扰对小兴安岭白桦沼泽温室气体排放的短期影响[J].生态学报,2011,22(4):857-865.
    [16]于丽丽,牟长城,顾韩,等.火干扰对小兴安岭落叶松-苔草沼泽温室气体排放的影响[J].生态学报,2011,31(18):5180-5191.
    [17]顾韩,牟长城,张博文.火干扰对小兴安岭毛赤杨沼泽温室气体排放动态影响及其影响因素[J].生态学报,2012,32(24):7808-7817.
    [18] Kobziar L N,Stephens S L. The effects of fuels treatments on soil carbon respiration in a Sierra Nevada pine plantation[J]. Agricultural and Forest Meteorology,2006,141(2/4):161-178.
    [19] Wuthrich C,Schaub D,Weber M,Marxer P,Conedera M. Soil respiration and soil microbial biomass after fire in a sweet chestnut forest in southern Switzerland[J]. Catena,2002,48(3):201-215.
    [20] Sawamoto T,Hatano R,Yajima T,Takahashi K,Isaev A P. Soil respiration in Siberian taiga ecosystems with different histories of forest fire[J]. Soil Science and Plant Nutrition,2000,46(1):31-42.
    [21] Freeman C,Lock M A,Reynolds B. Flux of CO2,CH4 and N2O from a Welsh peatland following simulation of water table drawdown:Potential feedback to climatic change[J]. Biogeochemistry,1993,19(1):51-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700