基于流体冲击对管道转弯处作用力影响分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of the influence of fluid impact on the force acting on the bend of pipe
  • 作者:周知进 ; 刘爱军 ; 何星 ; 路芳
  • 英文作者:Zhou Zhijin;Liu Aijun;He Xing;Lu Fang;College of Mechanical Engineering, Guizhou Institute of Technology;Mechanical and Electrical Engineering College,Hunan University of Science and Technology;
  • 关键词:液压系统 ; 弯曲角度 ; 等效作用力 ; 管壁模态
  • 英文关键词:hydraulic system;;bending angle;;equivalent force;;wall mode
  • 中文刊名:YYLX
  • 英文刊名:Chinese Journal of Applied Mechanics
  • 机构:贵州理工学院机械工程学院;湖南科技大学机电工程学院;
  • 出版日期:2019-02-01 16:57
  • 出版单位:应用力学学报
  • 年:2019
  • 期:v.36;No.157
  • 基金:国家自然科学基金(51479073);; 贵州省科技合作计划项目(黔科合LH[2015]7088号)
  • 语种:中文;
  • 页:YYLX201903026
  • 页数:7
  • CN:03
  • ISSN:61-1112/O3
  • 分类号:180-184+269-270
摘要
液压油流过弯道时,形成双螺旋紊流流动特性,紊流作用力对管道稳定性产生影响。为了探求流体冲击对管道不同弯度下等效作用力和管壁应力的影响,分析了五种弯曲角度下管道等效作用力与应力、应变。仿真结果表明:流体流经弯头处将产生额外阻力,该阻力趋于打破管道的稳定;角度大小改变会导致弯头处进出口两端应力发生较大的波动,影响管道的稳定性;随着弯头角度变大,管道内壁纵向应力呈现先减小后增大的变化规律,而两侧径向应力则一直变大;直管管壁应力对称,更具有强的抗干扰性。研究成果将为液压管道系统减振提供参考。
        When the hydraulic oil flows through the bend, the turbulent flow is formed,and the turbulence forces have effects on the stability of the pipe. In order to study the influence of the fluid impact on the equivalent force and the stress of the pipe wall, the equivalent force and the stress distribution of the pipe wall are analyzed and compared under five bending angles. The simulation results indicate that when the fluid flows through the elbow, the extra resistance will occur, and the resistances tends to break the stability of the pipe; the bending angle will change at both ends of the stress fluctuation of import and export of elbow, affects the pipeline stability; with the bending angle increasing, the pipe inner stress decreases after the stresses on both sides increase gradually; as the 180°straight pipe wall's stress has symmetry, it has the capability of anti-interference. The results provide a reference to the vibration reduction of hydraulic pipeline system.
引文
[1]TIJSSELING A S,VAUGRANTE P.FSI in L-shaped and T-shaped pipe systems[C]//Proceedings of the 10th International Meeting of the IAHR Work Group on the Behavior of Hydraulic Machinery Under Steady Oscillatory Conditions.Trondheim,Norway:IAHR,2001:1-11.
    [2]KERAMAT A,TIJSSELING A S,HOU Q,et al.Fluid structure interaction with pipe-wall viscoelasticity during water hammer[J].Journal of fluids and structures,2012,28:434-455.
    [3]周知进,陈雄,康红军,等.海流冲击对深海采矿装备液压管道流固耦合振动的影响[J].噪声与振动控制,2015,35(2):7-10.(ZHOU Zhijin,CHEN Xiong,KANG Hongjun,et al.Influence of ocean current impact on fluid-structure coupled vibration of deep-sea mining equipment’s hydraulic pipelines[J].Noise and vibration control,2015,35(2):7-10(in Chinese)).
    [4]周知进,阳宁,王钊,等.外部流体作用下管道输送流固耦合效应偏移分析[J].振动与冲击,2013,32(13):142-146.(ZHOU Zhijin,YANG Ning,WANG Zhao,et al.Pipe's offset analysis for a pipeline transporting under action of external fluid considering fluid-solid coupled effects[J].Journal of vibration and shock,2013,32(13):142-146(in Chinese)).
    [5]李宝辉,高行山,刘永寿.轴向可伸输液曲管平面内振动的波动方法研究[J].振动与冲击,2013,32(8):128-133,142.(LI Baohui,GAO Hangshan,LIU Yongshou.Wave propagation method for in-plane vibration of an axially extensible curved pipe conveying fluid[J].Journal of vibration and shock,2013,32(8):128-133,142(in Chinese)).
    [6]CZERWI?SKI Andrzej,?UCZKO Jan.Parametric vibrations of flexible hoses excited by a pulsating fluid flow,part II:experimental research[J].Journal of fluids and structures,2015,55:174-190.
    [7]?UCZKO Jan,CZERWI?SKI Andrzej.Nonlinear three-dimensional dynamics of flexible pipes conveying fluids[J].Journal of fluids and structures,2017,70:235-260.
    [8]李宝顺,刘桂斋.液压系统液体振动固有频率的计算[J].山东矿业学院学报,1987,4(3):31-38.(LI Baoshun,LIU Guizhai.The calculation of undamoed natural frequency of the fluid vibration in hydraulic system[J].Journal of Shandong institute of mining and metallurgy,1987,4(3):31-38(in Chinese)).
    [9]杨超,范世娟.管材参数对输液管流固耦合振动的影响[J].振动与冲击,2011,30(7):211-213.(YANG Chao,FAN Shijuan.Influence of pipe parameters on fluid-structure couped vibration of a fluid-conveying pipe[J].Journal of vibration and shock,2011,30(7):211-213(in Chinese)).
    [10]EVANS Neal D,CAPONE Dean E,BONNESS William K.Low-wave number turbulent boundary layer wall-pressure measurements from vibration data over smooth and rough surfaces in pipe flow[J].Journal of sound and vibration,2013,332(14):3463-3473.
    [11]黄澄,焦宗夏,尚耀星.考虑管路的飞机液压刹车系统压力振荡分析[J].北京航空航天大学学报,2014,40(2):210-216.(HUANGCheng,JIAO Zongxia,SHANG Yaoxing.Pressure oscillation analysis of aircraft hydraulic braking system considering pipeline[J].Journal of Beijing university of aeronautics and astronautics,2014,40(2):210-216(in Chinese)).
    [12]CHAKRABORTY Subrata,DEBBARMA Rama,MARANOGiuseppe Carlo.Performance of tuned liquid column dampers considering maximum liquid motion in seismic vibration control of structures[J].Journal of sound and vibration,2012,331(7):1519-1531.
    [13]张杰,梁政,韩传军.U型充液管道的流固耦合分析[J].应用力学学报,2015,32(1):64-68.(ZHANG Jie,LIANG Zheng,HANChuanjun.Fluid-solid coupling analysis of the U shape fluid conveying pipe[J].Chinese journal of applied mechanics,2015,32(1):64-68(in Chinese)).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700