基于脆弱性的地下水污染监测网多目标优化方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multi-Objective Optimization Method for Groundwater Contamination Monitoring Network based on Vulnerability Assessment
  • 作者:林茂 ; 苏婧 ; 孙源媛 ; 周吉峙 ; 纪丹凤 ; 崔驰飞 ; 席北斗
  • 英文作者:LIN Mao;SU Jing;SUN Yuanyuan;ZHOU Jizhi;JI Danfeng;CUI Chifei;XI Beidou;School of Environmental and Chemical Engineering,Shanghai University;CNHOMELAND Environmental Protection Water Pollution Governance Academician Work station;State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution,Chinese Research Academy of Environmental Science;
  • 关键词:地下水污染监测网 ; 多目标优化 ; 数值模拟 ; 脆弱性评价 ; NSGA-Ⅱ
  • 英文关键词:groundwater pollution monitoring network;;multi-objective optimization;;numerical simulation;;vulnerability assessment;;NSGA-Ⅱ
  • 中文刊名:HJKX
  • 英文刊名:Research of Environmental Sciences
  • 机构:上海大学环境与化学工程学院;浩蓝环保股份有限公司;中国环境科学研究院国家环境保护地下水污染模拟与控制重点实验室;
  • 出版日期:2017-11-07 09:14
  • 出版单位:环境科学研究
  • 年:2018
  • 期:v.31;No.240
  • 基金:北京市科技计划项目(D141100004514001);; 中欧环境可持续发展计划(DCI-ASIE/2013/323-261)~~
  • 语种:中文;
  • 页:HJKX201801011
  • 页数:8
  • CN:01
  • ISSN:11-1827/X
  • 分类号:86-93
摘要
区域地下水监测井的优化布设对于区域地下水系统管理有很重要的作用.为了以最少的监测费用最大化地获取区域污染风险和污染现状信息,以监测井数量最小、区域污染监测有效性最大、监测到的区域脆弱性分值最大为目标,建立了基于脆弱性评价的地下水污染监测网多目标优化模型.通过地下水脆弱性评价和溶质运移模型计算得到不同点位地下水脆弱性分值和污染物浓度,针对不同脆弱性等级提出区域监测井初设密度,采用改进非劣支配遗传算法(NSGA-Ⅱ)基于初设监测网求解该多目标优化模型,结合质量误差分析确定监测网优化方案.结果表明,阿什河漫滩区和樊家沟流域地下水硝酸盐氮污染相对较严重;地下水脆弱性高和较高等级区域分别分布在抽水井群影响范围和河漫滩;结合NSGA-ⅡPareto最优解及质量误差分析结果,得到该区域地下水监测井最优数量(12口)及其最优布设位置.研究显示,该优化监测网与初设监测网插值所得污染羽的质量误差小于15%,满足监测精度要求.
        The optimal design of groundwater monitoring plays an important role in regional groundwater system management.In order to use the least monitoring cost to get the maximum information about regional pollution risk and pollution situation,we established a multiobjective optimization model for groundwater contamination monitoring network based on vulnerability assessment,in which there were three objectives,including minmizing number of monitoring wells,maximizing monitoring effectiveness of regional groundwater pollution,and maximizing vulnerability indexes in monitoring area.Through groundwater vulnerability assessment and solute transport simulation,the vulnerability indexes and pollutant concentrations of groundwater in different monitoring sites were calculated respectively.Initial layout density of monitoring wells for regions at different groundwater vulnerability levels were proposed.Non-dominated sorted based algorithm II(NSGA-II) was applied to solve the multi-objective optimization model contraposing initial monitoring network.The optimized scheme of monitoring network was determined by comprehensively analyzing the result of optimization model and quality error analysis.The research area was located at Ashi River Basin in Harbin City,Heilongjiang Province.The results showed that the nitrate-nitrogen pollution ofgroundwater in flood plain of Ashi River and Fanjia Ditch Basin was relatively serious; regional groundwater with vulnerability at high and relatively high level was distributed in the influence scope of pumping well group and flood plain of Ashi River.Monitoring well number(12) and its optimal locations were optimized by synthesizing the Pareto optimum solution solved by NSGA-II and result of mass error analysis.The estimated mass error of optimized monitoring network compared with initial monitoring network was less than 15%,which met the requirement of monitoring precision.
引文
[1]范宏喜.开启地下水监测新纪元:聚焦国家地下水监测工程建设[J].水文地质工程地质,2015(2):161-162.FAN Hongxi.Open a new era of groundwater monitoring:focusing on project construction of national groundwater monitoring[J].Hydrogeology and Engineering Geology,2015(2):161-162.
    [2]WARDR C,LOFTIS J C,MCBRIDE G B.The data-rich but information poor syndrome in water quality monitoring[J].Environmental Management,1986,10(3):291-297.
    [3]WU Jianfeng,ZHENG Chunmiao,CHIEN C C,et al.A comparative study of Monte Carlo simple genetic algorithm and noisy genetic algorithm for cost-effective sampling network design under uncertainty[J].Advances in Water Resources,2006,29(6):899-911.
    [4]彭伟,吴剑锋,吴吉春.NPGA-GW在地下水系统多目标优化管理中的应用[J].高校地质学报,2008,14(4):631-636.PENG Wei,WU Jianfeng,WU Jichun.Application of niched pareto genetic algorithm to multi-objective optimal design of groundwater system[J].Geological Journal of China Universities,2008,14(4):631-636.
    [5]骆乾坤,吴剑锋,林锦,等.地下水污染监测网多目标优化设计模型及进化求解[J].水文地质工程地质,2013,40(5):97-103.LUO Qiankun,WU Jianfeng,LIN Jin,et al.An evolutionary-based multi-objective optimization model for groundwater monitoring network design[J].Hydrogeology and Engineering Geology,2013,40(5):97-103.
    [6]DHAR A,PATILR S.Multiobjective design of groundwater monitoring network under epistemic uncertainty[J].Water Resources Management,2012,26(7):1809-1825.
    [7]MOGHEIR Y,DE LIMA J L M P,SINGH V P.Entropy and multiobjective based approach for groundwater quality monitoring network assessment and redesign[J].Water Resources Management,2009,23(8):1603-1620.
    [8]REED P M,HADKA D,HERMAN J D,et al.Evolutionary multiobjective optimization in water resources:the past,present,and future[J].Advances in Water Resources,2013,51(1):438-456.
    [9]CHADALAVADA S,DATTA B.Dynamic optimal monitoring network design for transient transport of pollutants in groundwater aquifers[J].Water Resources Management,2008,22(6):651-1670.
    [10]骆乾坤,吴剑锋,杨运,等.参数空间变异性下地下水污染监测网多目标优化机制研究[J].地质评论,2015,61(3):570-578.LUO Qiankun,WU Jianfeng,YANG Yun,et al.The study on multiobjective optimization for groundwater monitoring network design under spatial variation of parameters[J].Geological Review,2015,61(3):570-578.
    [11]吴剑锋,郑春苗.地下水污染监测网的设计研究进展[J].地球科学进展,2004,19(3):429-436.WU Jianfeng,ZHENG Chunmiao.Contaminant monitoring network design:recent advances and future directions[J].Advance in Earth Sciences,2004,19(3):429-436.
    [12]NOURI J,MALMASI S.The role of groundwater vulnerability in urban development planning[J].American Journal of Environmental Sciences,2005,1(1):16-21.
    [13](苏)波波夫B H.地下水动态观测的组织及进行办法[M].肖庆龙,等译.北京:地质出版社,1958:74-112.
    [14]NARANY T S,RAMLI M F,FAKHARIAN K,et al.Multi-objective based approach for groundwater quality monitoring network optimization[J].Water Resources Management,2015,29(14):5141-5156.
    [15]朱瑾,霍传英,李和生,等.乌鲁木齐河流域地下水水质监测网设计[J].水文地质工程地质,2008,35(1):12-18.ZHU Jin,HUO Chuanying,LI Hesheng,et al.Monitoring of groundwater quality in Urumqi River Basin[J].Hydrogeology and Engineering Geology,2008,35(1):12-18.
    [16]WU Jianfeng,ZHENG Chunmiao,CHIEN C C.Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions[J].Journal of Contaminant Hydrology,2005,77(1/2):41-65.
    [17]PRAKASH O,ATTA B.Multiobjective monitoring network design for efficient identification of unknown groundwater pollution sources incorporating genetic programming-based monitoring[J].Journal of Hydrologic Engineering.doi:10.1061/(ASCE)HE.1943-5584.0000952.
    [18]KOLDITZ O,BAUER S,BILE L,et al.Open Geo Sys:an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical(THM/C)processes in porous media[J].Environmental Earth Sciences,2012,67(2):589-599.
    [19]ALRAWABDEH A M,ALANSARI N A,ALAANI A A,et al.A GIS-based drastic model for assessing aquifer vulnerability in Amman-Zerqa Groundwater Basin,Jordan[J].Journal of Clinical Oncology Official Journal of the American Society of Clinical Oncology,2013,5(5):490-504.
    [20]SHIRAZI S M,IMRAN H M,AKIB S.GIS-based DRASTIC method for groundwater vulnerability assessment:a review[J].Journal of Risk Research,2012,15(8):1-21.
    [21]BAI Liping,WANG Yeyao,MENG Fansheng.Application of DRASTIC and extension theory in the groundwater vulnerability evaluation[J].Water and Environment Journal,2012,26(3):381-391.
    [22]SENER E,DAVRAZ A.Assessment of groundwater vulnerability based on a modified DRASTIC model,GIS and an analytic hierarchy process(AHP)method:the case of Egirdir Lake Basin(Isparta,Turkey)[J].Hydrogeology Journal,2013,21(3):701-714.
    [23]周磊,王翊虹,林健,等.北京平原区地下水水质监测网优化设计[J].水文地质工程地质,2008,35(2):1-9.ZHOU Lei,WANG Yihong,LIN Jian,et al.Optical design of monitoring network of groundwater quality in the Beijing Plain[J].Hydrogeology and Engineering Geology,2008,35(2):1-9.
    [24]PREZIOSI E,PETRANGELI A B,GIULIANO G.Tailoring groundwater quality monitoring to vulnerability:a GIS procedure for network design[J].Environmental Monitoring and Assessment,2013,185(5):3759-3781.
    [25]KOLLAT J B,REEDP M,MAXWELL R M.Many-objective groundwater monitoring network design using bias-aware ensemble Kalman filtering,evolutionary optimization,and visual analytics[J].Water Resources Research,2010,47(2):155-170.
    [26]REED P M,MINSKER B S.Striking the balance:long-term groundwater monitoring design for conflicting objectives[J].Journal of Water Resources Planning and Management,2004,130(2):140-149.
    [27]熊锋,苏婧,翟秋敏,等.模拟优化模型在地下水监测布井中的应用[J].环境工程学报,2016,10(1):223-228.XIONG Feng,SU Jing,ZHAI Qiumin,et al.Application of simulation optimization model in groundwater monitoring well optimization[J].Chinese Journal of Environmental Engineering,2016,10(1):223-228.
    [28]DEB K,PRAATAP A,AGARWAL S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolution Computation,2002,6(2):182-197.
    [29]WANG Rui,BIAN Jianmin,GAO Yue.Research on hydrochemical spatio-temporal characteristics of groundwater quality of different aquifer systems in Songhua River Basin,eastern Songnen Plain,northeast China[J].Arabian Journal of Geosciences,2014,7(12):5081-5092.
    [30]林茂,纪丹凤,崔驰飞,等.阿什河流域地下水脆弱性分区[J].环境科学研究,2016,29(12):1773-1781.LIN Mao,JI Danfeng,CUI Chifei,et al.Groundwater vulnerability partition in Ashi River Basin[J].Research of Environmental Sciences,2016,29(12):1773-1781.
    [31]GU Baojing,GE Ying,CHANG S X,et al.Nitrate in groundwater of China:sources and driving forces[J].Global Environmental Change,2013,23(5),1112-1121.
    [32]郇环,王金生,赖德胜.松花江吉林段沿岸浅层地下水硝酸盐污染特征和影响因素分析[J].南水北调与水利科技,2014,12(6):6-11.HUAN Huan,WANG Jinsheng,LAI Desheng.Characteristics and influencing factors of nitrate pollution in shallow groundwater at Jilin section of Songhua River[J].South-to-North Water Transfers and Water Science and technology,2014,12(6):6-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700