利用团簇同位素恢复沉积盆地热历史的探索
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Reconstructing the basin thermal history with clumped isotope
  • 作者:徐秋晨 ; 邱楠生 ; 刘雯 ; 常青
  • 英文作者:Qiuchen Xu;Nansheng Qiu;Wen Liu;Qing Chang;State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum;College of Geosciences, China University of Petroleum;Zhengzhou Company, New Energy Research Institute (Beijing), Sinopec Star CO., LTD.;
  • 关键词:团簇同位素 ; 热历史 ; 碳酸盐岩 ; 古温标 ; 塔里木盆地 ; 四川盆地
  • 英文关键词:clumped isotope;;thermal history;;carbonate rocks;;paleo-geothermometers;;Tarim Basin;;Sichuan Basin
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:中国石油大学(北京)油气资源与探测国家重点实验室;中国石油大学(北京)地球科学学院;中石化新星(北京)新能源研究院有限公司郑州分公司;
  • 出版日期:2019-02-28
  • 出版单位:科学通报
  • 年:2019
  • 期:v.64
  • 基金:国家自然科学基金(41690133,41125010);; 国家油气专项(2016ZX05007-003);; 北京市科技新星和领军人才培养计划(Z171100001117163);; 中国石油科技创新基金(2017D-5007-0102)资助
  • 语种:中文;
  • 页:KXTB2019Z1007
  • 页数:13
  • CN:Z1
  • ISSN:11-1784/N
  • 分类号:87-99
摘要
海相碳酸盐岩层系由于缺乏有效的古温标,其热历史的恢复一直是困扰地球科学界的难题.碳酸盐团簇同位素(clumped isotope)作为一种新兴的古温标,在碳酸盐岩地层热历史研究中展现出了巨大的潜力.本文选取了塔里木盆地与四川盆地多口钻井受后期成岩作用影响较弱的碳酸盐岩样品进行团簇同位素古温标(Δ47)测试与分析,探讨了不同岩性的深层自然演化碳酸盐岩样品Δ47温度的意义、方解石团簇同位素~(13)C-~(18)O键固态重排规律以及沉积盆地热历史对不同岩性的团簇同位素的影响.塔里木盆地顺托果勒-卡塔克地区碳酸盐Δ47为0.443‰~0.634‰,计算团簇同位素温度为49.9~201.7℃,川中古隆起碳酸盐Δ47为0.423‰~0.537‰,计算团簇同位素温度为105.7~233.5℃.测得的团簇同位素温度远高于可能的成岩温度,表明上述研究区自然样品的碳酸盐团簇同位素受到了后期埋藏升温作用的影响,可能发生了~(13)C-~(18)O键的固态重排.根据塔里木盆地顺托果勒-卡塔克地区团簇同位素温度与钻孔温度关系推测自然样品方解石团簇同位素~(13)C-~(18)O键固态重排的"封闭温度"不高于120℃,热力学"平衡温度"不低于160℃,与国外实验室条件下得到的结果相一致.综合分析认为一阶近似模型能够较为准确地描述盆地热历史对方解石~(13)C-~(18)O键固态重排的影响;而盆地热历史对白云石团簇同位素影响的热演化模型还需要进一步研究.
        Due to the lack of effective paleo-geothermometers, it has often been difficult to reconstruct the thermal history of marine carbonate strata, resulting in unreliable conclusions. As emerging paleo-geothermometers, the clumped isotope of carbonate rocks could directly provide the temperature information without relying on the assumed isotopes of paleo-fluids, which has shown excellent potential in the study of the thermal history of carbonate reservoirs. To exclude the interference from late diagenesis, this study examined multiple carbonate samples under minor diagenetic alteration, which were selected from several wells in the Tarim Basin and Sichuan Basin to examine the clumped isotope(measured as Δ_(47) values). Considering the temperature range and acid fractionation factors of various clumped isotope formulae, the Defliese's formula was selected to calculate the temperature of clumped isotope. By analyzing the experimental results, the meaning of Δ_(47) temperature in the naturally evolved limestones and dolomites, the reordering rules of ~(13)C–~(18) O solid-state bond in calcite clumped isotope, and the effects of thermal history on clumped isotope in different lithologies have been comprehensively discussed herein. The Shun-Ka area located in the center of the Tarim Basin has been subjected to simple tectonic movements and continuous subsidence, because of which the strata of this area are currently experiencing the highest burial depth and temperature, which provide ideal conditions for studying the influence of temperature on Δ_(47) values. The measured Δ_(47) values of 17 samples from the Shun-Ka area were in the range 0.443‰–0.634‰, and the calculated temperatures of the clumped isotope were in the range 49.9–201.7°C. The Δ_(47) temperatures of these samples were higher than their diagenetic temperatures, indicating that Δ_(47) was affected by the burial process with the reordering of solid-state ~(13)C–~(18) O bonds. Based on the relationship between the Δ_(47) temperature and borehole temperature in the Shun-Ka uplift of the Tarim Basin, it was suggested that the "blocking temperature" of ~(13)C–~(18) O solid-state bond reordering in the naturally evolved calcites would not be higher than 120°C and the "equilibrium temperature" would not be lower than 160°C, which was consistent with the foreign laboratory results. Furthermore, to compare the effect of clumped isotope in different lithologies, another 11 dolomite samples were selected from the central uplift of the Sichuan Basin for analyzing the clumped isotope. The measured Δ_(47) values of dolomites from the Sichuan Basin were in the range 0.423‰–0.537‰, and the calculated temperatures of the clumped isotope were in the range 105.7–233.5°C. Similarly, it is possible that the warming effect associated with increased burial depth resulted in ~(13)C–~(18) O solid-state bond reordering and a higher temperature, which was the result of both diagenesis and burial heating. To investigate the effects of thermal history on clumped isotope, the first-order approximation model was used to simulate the clumped isotope values based on the thermal history reported in previous research. The initial diagenesis temperature was set to 20°C, and it was assumed that the Δ_(47) temperatures of samples were only affected by diagenesis temperature and thermal history. Results revealed that the Δ_(47) temperature calculated using the first-order approximation model of limestone samples from the Yingshan Formation of the Tarim Basin exhibited good agreement with the measured temperature, but the calculated Δ_(47) temperature in the dolomites considerably differed from the actual measured temperature. This conflict could have occurred due to various thermodynamic properties(such as frequency factors and activation energy) and the complex diagenesis process between limestones and dolomites. Therefore, the first-order approximation model could be used more accurately to describe the effect of the basin's thermal history on ~(13)C–~(18) O solid-state reordering in calcites. However, further research should be conducted on dolomites to build an inversion model focusing on the thermal history of the basin and clumped isotope.
引文
1 Zuo Y H,Qiu N S,Hao Q Q,et al.Geothermal regime and source rock thermal evolution in the Chagan sag,Inner Mongolia,north China.Mar Petrol Geol,2015,59:245-267
    2 Pang X Q,Liu K Y,Ma Z Z,et al.Dynamic field division of hydrocarbon migration,accumulation and hydrocarbon enrichment rules in sedimentary basins.Acta Geol Sin,2012,86:1559-1592
    3 Eiler J M.“Clumped-isotope”geochemistry-The study of naturally-occurring,multiply-substituted isotopologues.Earth Planet Sci Lett,2007,262:309-327
    4 Brand U,Came R E,Affek H,et al.Climate-forced change in Hudson Bay seawater composition and temperature,Arctic Canada.Chem Geol,2014,388:78-86
    5 Carrapa B,Huntington K W,Clementz M,et al.Uplift of the Central Andes of NW Argentina associated with upper crustal shortening,revealed by multi-proxy isotopic analyses.Tectonics,2014,33:1039-1054
    6 Huntington K W,Saylor J,Quade J,et al.High late Miocene-Pliocene elevation of the Zhada Basin,southwestern Tibetan Plateau,from carbonate clumped isotope thermometry.Geol Soc Am Bull,2015,127:181-199
    7 Bergman S C,Huntington K W,Crider J G.Tracing paleofluid sources using clumped isotope thermometry of diagenetic cements along the Moab Fault Utah.Am J Sci,2013,313:490-515
    8 Passey B H,Henkes G A.Carbonate clumped isotope bond reordering and geospeedometry.Earth Planet Sci Lett,2012,351-352:223-236
    9 Huntington K W,Lechler A R.Carbonate clumped isotope thermometry in continental tectonics.Tectonophysics,2015,647-648:1-20
    10 Winkelstern I Z,Lohmann K.Shallow burial alteration of dolomite and limestone clumped isotope geochemistry.Geology,2016,44:467-470
    11 Henkes G A,Passey B H,Grossman E L,et al.Temperature limits for preservation of primary calcite clumped isotope paleotemperatures.Geochim Cosmochim Acta,2014,139:362-382
    12 Li P P,Ma Q Q,Zou H Y,et al.Basic principle of clumped isotopes and geological applications(in Chinese).J Palaeogeogr,2017,19:713-728[李平平,马倩倩,邹华耀,等.团簇同位素的基本原理与地质应用.古地理学报,2017,19:713-728]
    13 Kim S T,O’Neil J R.Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates.Geochim Cosmochim Acta,1997,61:3461-3475
    14 Schauble E A,Ghosh P,Eiler J M.Preferential formation of 13C-18O bonds in carbonate minerals,estimated using first-principles lattice dynamics.Geochim Cosmochim Acta,2006,70:2510-2529
    15 Ghosh P,Adkins J,Affek H,et al.13C-18O bonds in carbonate minerals:A new kind of Paleoth-Ermometer.Geochim Cosmochim Acta,2006,70:1439-1456
    16 Dennis K J,Schrag D P.Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration.Geochim Cosmochim Acta,2010,74:4110-4122
    17 Zaarur S,Affek H P,Brandon M T.A revised calibration of the clumped isotope thermometer.Earth Planet Sci Lett,2013,382:47-57
    18 Guo W F,Mosenfelder J L,Goddard W A,et al.Isotopic fractionations associated with phosphoric acid digestion of carbonate minerals:Insights from first-principles theoretical modeling and clumped isotope measurements.Geochim Cosmochim Acta,2009,73:7203-7225
    19 Kluge T,John C M,Jourdan A,et al.Laboratory calibration of the calcium carbonate clumped isotope thermometer in the 20-250°Ctemperature range.Geochim Cosmochim Acta,2015,157:213-227
    20 Defliese W F,Hren M T,Lohmann K C.Compositional and temperature effects of phosphoric acid fractionation onΔ47 analysis and implications for discrepant calibrations.Chem Geol,2015,396:51-60
    21 Winkelstern I Z,Kaczmarek S E,Lohmann K C,et al.Calibration of dolomite clumped isotope thermometry.Chem Geol,2016,443:32-38
    22 Bonifacie M,Calmels D,Eiler J M,et al.Calibration of the dolomite clumped isotope thermometer from 25 to 350°C,and implications for a universal calibration for all(Ca,Mg,Fe)CO3 carbonates.Geochim Cosmochim Acta,2017,200:255-279
    23 Zhou B,Jia C Z,Gu J Y,et al.Sequence of diagenesis evolution of upper Ordovician carbonate rocks in Tazhong oilfield,Tarim Basin(in Chinese).Xinjiang Petrol Geol,2008,29:166-169[周波,贾承造,顾家裕,等.塔中台缘带上奥陶统碳酸盐岩成岩演化序列.新疆石油地质,2008,29:166-169]
    24 Li H L,Qian Y X,Sha X G,et al.Development characteristics and influencing factors of carbonate reservoirs in the Ordovician Lianglitage Formation at the northwest pitching end of the Katake Uplift,the Tarim Basin(in Chinese).Oil Gas Geol,2010,31:69-75[李慧莉,钱一雄,沙旭光,等.塔里木盆地卡塔克隆起西北倾没端良里塔格组碳酸盐岩储层发育特征与影响因素.石油与天然气地质,2010,31:69-75]
    25 Wang J Q,Wu T.The carboniferous depositional characteristics and petroleum geology in the Tarim Basin(in Chinese).Exper Petrol Geol,1999,21:23-27[王君奇,武涛.塔里木盆地石炭系沉积特征及石油地质意义.石油实验地质,1999,21:23-27]
    26 Liu S G,Ma Y S,Wang G Z,et al.Formation Process and Mechanism of the Sinian-Silurian Natural Gas Reservoirs in the Sichuan Basin,China(in Chinese).Beijing:Science Press,2014.1-15[刘树根,马永生,王国芝,等.四川盆地下组合天然气的成藏过程和机理.北京:科学出版社,2014.1-15]
    27 Shan X Q,Zhang J,Zhang B M,et al.Dolomite karst reservoir characteristics and dissolution evidences of Sinian Dengying Formation,Sichuan Basin(in Chinese).Acta Petrol Sin,2016,37:17-29[单秀琴,张静,张宝民,等.四川盆地震旦系灯影组白云岩岩溶储层特征及溶蚀作用证据.石油学报,2016,37:17-29]
    28 Loyd S J,Corsetti F A,Eagle R A,et al.Evolution of Neoproterozoic Wonoka-Shuram Anomaly-aged carbonates:Evidence from clumped isotope paleothermometry.Precambrian Res,2015,264:179-191
    29 Dennis K J,Affek H P,Passey B H,et al.Defining an absolute reference frame for‘clumped’isotope studies of CO2.Geochim Cosmochim Acta,2011,75:7117-7131
    30 Henkes G A,Passey B H,Wanamaker Jr A D,et al.Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells.Geochim Cosmochim Acta,2013,106:307-325
    31 Wacker U,Fiebig J,Schoene B R.Clumped isotope analysis of carbonates:Comparison of two different acid digestion techniques.Rapid Commun Mass Sp,2013,27:1631-1642
    32 Passey B H,Levin N E,Cerling T E,et al.High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates.Proc Natl Acad Sci USA,2010,107:11245-11249
    33 Zhuang X B,Gu Y,Shao Z B,et al.Control effect of geothermal field on hydrocarbon accumulation process in Tarim Basin:A case study of Guchengxu uplift(in Chinese).Acta Petrol Sin,2017,38:502-511[庄新兵,顾忆,邵志兵,等.塔里木盆地地温场对油气成藏过程的控制作用--以古城墟隆起为例.石油学报,2017,38:502-511]
    34 Xu M,Zhu C Q,Tian Y T,et al.Borehole temperature logging and characteristics of subsurface temperature in the Sichuan Basin(in Chinese).Chin J Geophys,2011,54:1054-1060[徐明,朱传庆,田云涛,等.四川盆地钻孔温度测量及现今地热特征.地球物理学报,2011,54:1054-1060]
    35 Veizer J,Ala D,Azmy K,et al.87Sr/86Sr,δ13C andδ18O evolution of Phanerozoic seawater.Chem Geol,1999,161:59-88
    36 Zhu D Y,Zhang D W,Zhang R Q,et al.Fluid alteration mechanism of dolomite reservoirs in Dengying Formation,South China(in Chinese).Acta Petrol Sin,2015,36:1188-1198[朱东亚,张殿伟,张荣强,等.中国南方地区灯影组白云岩储层流体溶蚀改造机制.石油学报,2015,36:1188-1198]
    37 Qiang S T,Shen P,Zhang J,et al.The evolution of carbonate sediment diagenesis and pore fluid in Dengying Formation,Central Sichuan Basin(in Chinese).Acta Sedimentol Sin,2017,35:797-811[强深涛,沈平,张健,等.四川盆地川中地区震旦系灯影组碳酸盐沉积物成岩作用与孔隙流体演化.沉积学报,2017,35:797-811]
    38 Qiu N S,Chang J,Zuo Y H,et al.Thermal evolution and maturation of lower Paleozoic source rocks in the Tarim Basin,northwest China.AAPG Bull,2012,96:789-821
    39 Zhu C Q,Hu S B,Qiu N S,et al.Thermal history of the Sichuan Basin,SW China:Evidence from deep boreholes.Sci China Earth Sci,2016,59:70-82
    40 Bonifacie M,Calmels D,Eiler J M.Clumped isotope thermometry of marbles as an indicator of the closure temperatures of calcite and dolomite with respect to solid-state reordering of C-O bonds.Mineral Mag,2013,77:735
    41 Shenton B J,Grossman E L,Passey B H,et al.Clumped isotope thermometry in deeply buried sedimentary carbonates:The effects of bond reordering and recrystallization.Geol Soc Am Bull,2015:B31161-B31169

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700