工业余热氨水吸收式制冷系统研究现状与发展趋势
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research status and development trend of industrial waste heat ammonia water absorption refrigeration system
  • 作者:栗鹏飞
  • 英文作者:LI Peng-fei;
  • 关键词:工业余热 ; 氨水吸收式制冷系统 ; 研究现状 ; 发展
  • 英文关键词:industrial waste heat;;ammonia-water absorption refrigeration systems;;research status;;development
  • 中文刊名:JNJN
  • 英文刊名:Energy Conservation
  • 机构:郑州铁路职业技术学院;
  • 出版日期:2018-09-25
  • 出版单位:节能
  • 年:2018
  • 期:v.37;No.432
  • 基金:陕西省教育厅重点实验室项目(项目编号:15JS01814JS020);; 陕西省科技厅重点实验室项目(项目编号:2014SZS16-P042014SZS16-Z01)
  • 语种:中文;
  • 页:JNJN201809018
  • 页数:5
  • CN:09
  • ISSN:21-1115/TK
  • 分类号:64-68
摘要
由于我国节能减排政策的引导,工业余热氨水吸收式制冷系统以其节能减排、制冷效果好等优点越来越引起人们的关注。工业余热氨水吸收式制冷系统的研究主要集中在新型工质对的寻求、强化传热传质、优化制冷循环系统的研究等方面,特别是吸收器的吸收强化及活性剂的研究,成为工业余热氨水吸收式制冷系统的研究热点,通过对以上内容进行了详细分析,并指出今后的发展趋势。
        As a result of China's energy-saving emission reduction policy guidance, Industrial waste heat ammonia absorption refrigeration system had been paid more and more attention due to its advantages of energy saving, emission reduction and excellent refrigerating effects. The research of Industrial waste heat ammonia absorption refrigeration system has been focused on searching of new working pair with high efficiency, enhancing heart and mass transfer,optimizing the cycle of refrigeration system. Particularly, absorption strengthen and active agent has been the hotspot in the research on Industrial waste heat ammonia absorption refrigeration system. This paper makes a detailed analysis of the above contents, and points out the development trend in the future.
引文
[1]Farshi L G,Ferreira C A I,Mahmoudi S M S,et al.First and second law analysis of ammonia/salt absorption refrigeration systems[J].International Journal of Refrigeration,2014,(40):111421.
    [2]靳华栋,孙淑风,王立.吸收式制冷用氨一硝酸钾上质对及循环系统的研究[J].低温与超导,2007,35(1):165-168.
    [3]Venegas M,Izquierdo M.Rodri Guez P,et al.Heat and mass transfer during absorption of ammonia vapour by LiNO3-NH3solution droplets[J].International Journal of Heat and Mass Transfer,2004,47(12-13):2653-2667.
    [4]Ihmels E C,Safarov J T.properties and apparent molar volumes V of LiNO3 in methanol[J].The Journal of Chemical Thermodynamics,2006,38(11):1443-1449.
    [5]杨景昌,党洁修.Liar-ZnCl2-CaBr2H2O体系增温型吸收热泵的操作性能预测[J].四川大学学报(工程科学版),1991,3(5):519-527.
    [6]党洁修,杨景昌,张凌之.几种无机物工质对增温型吸收热泵的实验研究[J].四川大学学报(工程科学版),1992,3(4):427-432.
    [7]钟理,谭盈科.水-乙二醇高温吸收式热泵系统的模拟分析[J].制冷,1990,8(3):317-322.
    [8]钟理,谭盈科.升温型热泵的研究与进展[J].广州化工,1991,13(1):52-57.
    [9]徐士鸣,任国红,陈石.TFE-TEGDME吸收式制冷/热泵工质热物性参数表达式[J].大连理工大学学报,2002,42(1):60-64.
    [10]Kh.Mejbri et al.Discussion of the feasibility of the Einstein refrigeration cycle[J].International Journal of Refrigeration,2006,29:60-70.
    [11]Kim K,Shin B,Lee H,Ziegler F.Refractive index and heat capacity of 1-butyl-3-methylimidazolium bromide and1-butyl-3-methylimidazolium tetrafluoroborate,and vapor pressure of binary systems for 1-butyl-3-methylimidazolium bromide+trifluoroethanol and 1-butyl-3-methylimidazolium tetrafluoroborate+trifluoroethanol[J].Fluid Phase Equilibria,2004,218(2):215-220.
    [12]Coronas A.Absorption Heat Pump with the TFE-TEGDMEand the TFE-H2O-TEGDNE System[J].Applied Thermal Engineer,1996,16(4):335-345.
    [13]Stephan K.Heat transformation with the ternary working fluid TFE-H2O-E181[J].Int.J.Refrig,1994,16(2):120-128.
    [14]Kawada A,Otake M,Toyofuku.Absorption compression heat pumps using TFE-E181[A].The Proceedings of the Conference:Environment-friendly Technologies for the 21th Century[C].Tokyo:sn,1991:121-126.
    [15]Stephan K,Henger R.Heat transformation with the ternary working fluid TFE-H2O-E181[J].Int J Refrig,1993,16(2):120-128.
    [16]Zhang Z,Tan Z,Sun L X,et al.Thermodynamic investigation of room temperature ionic liquid:The heat capacity and standard enthalpy of formation of EM1ES[J].Thermochimica acta,2006,447(1-2):141-146.
    [17]Verevkin S P,Safarov J,Bich E,et al.Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with 1-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl)imide[J].Fluid Phase Equilibria,2005,236(1-2):222-228.
    [18]胡德福,溴化锂吸收式制冷机高效传热管应用技术研究[J].船舶工程,1998,(5):21-24.
    [19]Martin Fiebig.Embedded Vortices in Internal Flow Heat Transfer and Pressure Loss Enhancement[J].Int.J.Heat and Fluid Flow,1995,22(16):376-388.
    [20]周国兵,张于峰,齐乘英,等.一种强化太阳能换热的新型涡流发生器换热机理与实验研究[J].太阳能学报,2003,6(24):781-785.
    [21]Ru Yang,DerMing Jou.Heat and mass transfer of absorption process for falling film nside a porous medium[J].International Journal of Heat and Mass Transfer,1995,38(6):1121-1126.
    [22]姜周曙,胡亚才,屠传经.溴化锂吸收式制冷机新型镍合金强化传热管的研究[J].流体机械,1999,(10):42-46.
    [23]Chan Woo Park,Sung Soo Kim,Hyun Churl Cho,et al.Experimental correlation of falling film absorption heat transfer on micro-scale hatched tubes,2003,(26):758-763.
    [24]Yong Tae Kang et al.Experimental correlation of combined heat and mass transfer for NH3-H2O falling film absorption[J].International Journal of Refrigeration 1999,22:250-262.
    [25]Reindert H W,Assenaat-Guus S,Numerical results of falling film absorption with water-ammoniac[J].International Journal Thean Sci,1999,38:960-964.
    [26]Kyongmin Kwon,Siyoung Jeong.Effect of vapor flow on the falling film heat and mass transfer of the ammonia/water absorber[J].International Journal of Refrigeration,2004,27:955-964.
    [27]Islan Md R.Perfoanance study of a falling film absorber with a film-inverting configuration[J].Int.J Refrigeration,2003,26:909-917.
    [28]崔晓钎,李关玲.板式膜反转降膜吸收器的设计研究[J].流体机械,2005,(5):58-62.
    [29]Nitin Joel,D Yogi Goswami.Analysis of a counter current vapor flow absorber[J].International Journal of heat and mass transfer,2005,48:1283-1292.
    [30]李彦军,杜垲,李舒宏,等.铁酸锌纳米强化氨水发生过程实验研究[J].制冷学报,2016,37(6):71-77.
    [31]盛伟,武卫东,张华,等.纳米颗粒对氨水鼓泡吸收性能的强化实验[J].制冷学报,2010,31(1):31-34.
    [32]Stein S,Salavera D,Bruno J C,et al.A basis for the development of new ammonia-water-sodium hydroxide absorption chillers[J].International Journal of Refrigeration,2009,32(4):577-587.
    [33]Yong Tae Kanga,Takao Kashiwagi.Heat transfer enhancement by Marangoni convection in the NH3-H2Oabsorption process[J].International Journal of Refrigeration2002,25:780-788.
    [34]Jin-Kyeong Kim,Jun Young Jung,Yong Tae Kang.Absorption performance enhancement by nano-particles and chemical surfactants in binary nanoffuids[J].International Journal of Refrigeration.2007,30(1):50-57.
    [35]S.Kulankara,K.E.Herold.Theory of Heat/Mass Transfer Additives in Absorption Chillers[J].HVAC&R Research,2000,6(4):369-380.
    [36]Dmitrey Glebov,Fredrik Setterwall.Experimental study of heat transfer additive influence on the absorption chiller performance[J].International Journal of Refrigeration,2002,(25):538-545.
    [37]高洪涛,飞原英治.含有促进传热传质添加剂的溴化锂水溶液的表面张力[J].制冷学报,2004,(3):5-8.
    [38]高洪涛.界面活性剂的混合添加对溴化锂溶液表面张力及吸收水蒸气的影响[J].工程热物理学报,2007,28(3):385-387.
    [39]Xiao Feng Niu,Kai Du,Fu Xian.Experimental study on ammonia-water falling film absorption in extemal magnetic fields[J].International Journal of Refrigerati on.2010,33(4):686-694.
    [40]孔丁峰,柳建华,张良,等.单级氨水吸收式制冷机试验台性能研究[J].流体机械,2010,38(5):56-62.
    [41]林陈敏,陈亚平,田莹.氨水吸收式制冷系统在渔船尾气中余热利用分析[J].能源研究与利用,2008,(1):37-40.
    [42]Jose Fernandez-Seara,Alberto Vales,Manuel Vazquez.Heat recovery system to power an on board NH3-H2O absorption refrigeration plant in trawler chiller fishing vessels[J].Applied Thermal Engineering,1998,(18):1189-1205.
    [43]N Ben Ezzine,M Barhoumi,K Mejbri,et al.Solar cooling principle First and Second Law ammonia water doublegenerator with the absorption analysis absorption of an chiller Desalination,2004,168:137-144.
    [44]Velazquez N,Best R.Methodology for the energy analysis of an air cooled GAX absorption heat pump operated by natural gas and solar energy[J].Applied Thermal Engineering,2002,22(10):1089-1103.
    [45]Priedeman D K,Christensen R N.GAX absorption cycle design process[J].ASHRAE Transactions,1999,105(1):769-779.
    [46]Rameshkumar A,Udayakumar M.Simulation studies on GAXabsorption compression cooler[J].Energy Convers Manage,2007,48:2604-2610.
    [47]RameshKumar A,UdayaKumar M.Studies of compressor pressure ratio effect on GAXAC(generator-absorberexchange absorption compression)cooler[J].Applied Energy,2008,85:1163-1172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700