FDM技术中路径规划对成型件力学性能影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Path Planning on Mechanical Properties of Molded Parts in FDM Technology
  • 作者:穆存远 ; 冯叶阳 ; 刘运学
  • 英文作者:MU Cunyuan;FENG Yeyang;LIU Yunxue;School of Mechanical Engineering,Shenyang Jianzhu University;School of Material Science and Engineering,Shenyang Jianzhu University;
  • 关键词:FDM技术 ; 路径规划 ; 力学实验 ; 理论模型
  • 英文关键词:FDM technology;;path planning;;mechanical experiment;;theoretical model
  • 中文刊名:SYJZ
  • 英文刊名:Journal of Shenyang Jianzhu University(Natural Science)
  • 机构:沈阳建筑大学机械工程学院;沈阳建筑大学材料科学与工程学院;
  • 出版日期:2019-01-15
  • 出版单位:沈阳建筑大学学报(自然科学版)
  • 年:2019
  • 期:v.35;No.178
  • 基金:国家自然科学基金项目(51375137)
  • 语种:中文;
  • 页:SYJZ201901018
  • 页数:9
  • CN:01
  • ISSN:21-1578/TU
  • 分类号:148-156
摘要
目的研究FDM技术中路径规划对于成型件力学性能影响,找出力学性能最佳的路径规划方式,分析不同路径规划成型件之间力学性能差异的原因.方法以切片软件Slicr3中直线式、同心式、蜂窝式、希尔伯特曲线式、阿基米德曲线式路径规划方式为例,使用PRUSA型串联式3D快速成型机制备不同路径规划方式的实验试样,分别对各路径规划方式的试样进行了拉伸实验和弯曲实验;建立各路径规划试样理论模型,分析理论模型内部结构差异及计算各模型的内部材料覆盖面积;最终将力学实验结果和理论模型分析结果进行对比分析.结果得出同心式路径规划的试样力学性能最佳,其抗拉强度为44. 77 MPa、拉伸断后伸长率为4. 64%,弯曲强度为69. 87 M Pa;同心式路径规划试样的理论模型内部材料覆盖面积为18. 10 mm2,大于其他4种路径规划试样.结论成型件的力学性能和路径规划有着密切的关联,而造成各路径规划成型件之间力学性能差异的原因就是其内部材料覆盖面积的不同.
        To find out the best path planning for mechanical properties and analyze the reasons for the differences in mechanical properties among different path planning molded parts,the influence of path planning on the mechanical properties of FDMtechnology was studied. Linear,Concentric,Honeycomb,Hilbert curve and Archimedes curve path planning methods in the slicing software Slicer3 were taken as examples. The experimental samples of different path planning methods were made by the PRUSA type tandem 3D rapid prototyping machine,and the tensile test and bending test on the samples of each path planning method were carried out. The theoretical model of eachpath planning sample was established. The internal structure difference of the theoretical model was analyzed and the internal material coverage area of each model was calculated. Finally,the mechanical experimental results and theoretical model analysis results were compared and analyzed.The results showthat the mechanical properties of the sample with concentric path planning are the best,and its tensile strength is 44. 77 MPa,elongation after tensile break is 4. 64 %,and bending strength is 69. 87 MPa. The theoretical model of concentric path planning samples has an internal material coverage of 18. 10 mm,which is larger than the other four path planning samples. The conclusion is that the mechanical properties of the molded parts are closely related to the path planning,and the reason for the difference in mechanical properties among the molded parts in the path planning is the difference in the internal material coverage.
引文
[1]桑鹏飞.熔融沉积扫描路径规划及实验研究[D].南京:南京航空航天大学,2015.(SANGPengfei. Research on the scanning path planning and experiment in fused deposition modeling[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2015.)
    [2] DUDEK P. FDM3D printing technology in manufacturing composite elements[J]. Archmetall mater,2013,58(4):1415-1418.
    [3] KAVEH M,BADROSSAMAY M, FOROOZMEHR E,et al. Optimization of the printing parameters affecting dimensional accuracy and internal cavity for HIPS material used in fused deposition modeling processes[J]. Journal of materials processing technology,2015,226:280-286.
    [4] SUTRADHAR A,PARK J,CARRAU D,et al.Experimentalvalidation of 3D printed patientspecific implants using digital image correlation and finite element analysis[J]. Computers in biology&medicine,2014,52(3):8-17.
    [5]汪绍兴.基于PLA丝材的FDM试件机械性能分析及优化[D].大连:大连理工大学,2015.(WANGShaoxing. Analysis and optimization of the mechanical properties for FDMspecimens based on PLA filament[D]. Dalian University of Technology,2015.)
    [6] HOSSAIN MS,ESPALIN D,RAMOS J. Improved mechanical properties of fused deposition modeling-manufactured parts through build parameter modifications[J]. Journal of manufacturing science and engineering,2014,136(12):61001-61002.
    [7]林海英,崔博然,刘冰河. 3D打印工程塑料力学特性分析[J].公路交通科技,2017,34(1):149-153.(LIN Haiying,CUI Boran,LIU Binghe. Analysis on mechanical property of 3D printing engineering plastic[J]. Journal of highway and transportation research and development,2017,4(1):149-153.)
    [8]高士友,黎宇航,周野飞,等.熔融沉积(FDM)3D打印成形件的力学性能实验研究[J].塑性工程学报,2017,24(1):200-206.(GAO Shiyou,LI Yuhang,ZHOU Yefei,et al.Experimental study on mechanical properties of molten deposition 3D printing formwork[J].Journal of plasticity engineering,2017,24(1):200-206.)
    [9] DURRGUN I E. Experimental investigation of FDMprocess for improvement of mechnical properties and production cost[J]. Rapid prototyping journal,2014,20(3):28-235.
    [10] AMENDOLA A, HERNANEZ-NAVA E,GOODALL R,et al. On the additive manu-facturing,post-tensioning and testing of bi-material tensegrity structures[J]. Composite structures,2015,131:66-71
    [11]胡邓平,文泽军,陈裕和,等.基于3D打印技术的FDM薄板塑件表面成型精度实验研究[J].中国塑料,2017,31(2):82-87.(HU Dengping,WEN Zejun,CHEN Yuhe.Surface-molding accuracy of FDMthin plastic parts molded by 3D printing[J]. China Plasics,2017,31(2):82-87.)
    [12]杨立宁,单忠德,戎文娟,等.金属件熔融堆积3D打印过程热应力场数值模拟[J].铸造技术,2016,37(4):753-758.(YANGLining,SHAN Zhongde,RONGWenJuan,et al. Numerical simulation of thermal stress field in 3D printing technology based on metal fused and deposition[J]. Casting technology,2016,37(4):753-758.)
    [13]曾善文.基于FDM的扫描路径分析与研究[D].成都:西南交通大学,2017.(ZENGShanwen. Analysis and research of the scan path based on FDM[D]. Chengdu:Southwest Jiaotong University,2017.)
    [14]赵天婵,黄海.基于3D打印的熔融沉积快速成型工艺若干问题研究[J].机械工程师,2016(4):22-23.(ZHAO Tianchan,HUAN Hai. Research on some problems of rapid deposition process of Melt deposition based on 3D printing[J]. Mechanical Engineer,2016(4):22-23.)
    [15]范孝良,李传帅,代红川,等. FDM快速成型工艺支撑结构参数的实验研究[J].中国工程机报,2016,14(6):520-524.(FAN Xiaoliang,LI Chuanshuai,DAI Hongchuan,et al. Experiment research on supporting struture parameters for fused deposition modeling[J]. Chinese journal of construction machinery,2016,14(6):520-524.)
    [16] DINGD,PAN Z,CUIURI D,et al. A tool-path generation strategy for wire and arc additive manufacturing[J]. International journal of advanced manufacturing technology,2014,73(1-4):173-183.
    [17]侯章浩,乌日开西·艾依提. 3D打印的路径规划研究综述[J].机床与液压,2016,44(5):179-182.(HOU Zhanghao,WURIKAIXI A. Reviewof studies on path planning of 3D printing[J].Machine&hydraulics,2016,44(5):179-182.)
    [18]李磊.基于FDM成型技术的3D打印工件机械性能及质量研究分析[D].广州:华南理工大学,2016.(LI Lei. Research and analysis on mechanical property and quality for 3D printing workpiece based on FDMmolding technology[D]. Guangzhou:South China University of Technology,2016.)
    [19] GALANTUCCI L M,LAVECCHI F,PERCOCO G. Experimental study aiming to enhance the surface finish of fused deposition modeled parts[J]. CIRP annals-manufacturing technology,2009,58:189-192.
    [20]孟陈力. FDM成型性能的影响因素分析及实验研究[D].哈尔滨:哈尔滨理工大学,2017.(MENGChen Li. The analysis and experimental study on the influencing factors of FDMforming performance[D]. Harbin:Harbin University of Science and Technology,2017.)
    [21]国家质量监督检验检疫总局职业技能鉴定指导中心.材料物理性能检验[M].北京:中国计量出版社,2005.(National Quality Supervision,Inspection and Quarantine General Administration Vocational Skills Identification and Guidance Center. Material Physical Property Test[M]. Beijing:China Metrology press,2005.)
    [22]侯文顺,杨宗伟.高分子物理[M].北京:化学工业出版社,2007.(HOU Wenshun,YANGZongwei. Polymer physics[M]. Beijing:Chemical Industry Press,2007.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700