新型微环谐振密集波分复用器仿真研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of Novel Microring Resonant Dense Wavelength Division Multiplexer
  • 作者:刘春娟 ; 徐晓瑞 ; 马运季 ; 杨超山
  • 英文作者:LIU Chun-juan;XU Xiao-rui;MA Yun-ji;YANG Chao-shan;College of Electronic and Information Engineering,Lanzhou Jiaotong University;
  • 关键词:微环谐振带 ; 布拉格谐振带 ; 密集波分复用器 ; 传输矩阵法 ; 形状因子
  • 英文关键词:Microring resonance band;;Bragg resonance band;;Dense wavelength division multiplexer(DWDM);;Transfer matrix method;;Shape factor
  • 中文刊名:JSJZ
  • 英文刊名:Computer Simulation
  • 机构:兰州交通大学电子与信息工程学院;
  • 出版日期:2018-01-15
  • 出版单位:计算机仿真
  • 年:2018
  • 期:v.35
  • 基金:甘肃省建设科技攻关项目(JK2016-7);; 甘肃省高等学校科研项目(2016A-020);; 甘肃省自然科学基金(1610RJZA046)
  • 语种:中文;
  • 页:JSJZ201801035
  • 页数:5
  • CN:01
  • ISSN:11-3724/TP
  • 分类号:166-170
摘要
在微环与波导构成的耦合光学器件中,布拉格谐振对下载端频谱的带宽、形状因子损害非常大。提出了消除布拉格谐振的方法,并对改进后的谐振带影响因素进行仿真。通过分析微环谐振条件和布拉格谐振条件,利用Matlab传输矩阵法仿真了并联微环的下载端函数模型,仿真得到输出频谱。结果表明,当微环间距与微环周长的比值为0.25,输出频谱的布拉格谐振带(BB)消失,出现了单个微环谐振带。上述方法消除了布拉格谐振带对频谱的损害,使频谱形状因子显著提高,设计的DWDM的信道密集度与系统折射率差成反比。
        In the coupling optics of microring and waveguide,the Bragg resonances greatly damage the bandwidth and shape factor of the spectrum at the drop port.A method for eliminating Bragg resonance was put forward,and the influence factors of the modified resonance band were simulated.By analyzing the microring resonance condition and Bragg resonance condition,the mathematic model of the drop port of the parallel microring was simulated with Matlab transfer matrix method,and the output spectrum was simulated.The results show that the Bragg resonant band(BB)of the output spectrum disappears when the ratio of the microring spacing to the perimeter of the microring is 0.25.This method eliminates the spectral damage of the Bragg resonant band and improves the spectral shape factor significantly.The channel density of the designed DWDM is inversely proportional to the refractive index difference of the system.
引文
[1]D Dai,et al.Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength-and mode-division-multiplexing[J].Laser&Photonics Review,2015,9(3):339-344.
    [2]Deng Lili,et al.Investigation on the sensing performances of strip and rib SOI waveguides microring structures[J].Infrared and Laser Engineering,2015,44(2):752-757.
    [3]刘瑜,梁正,杨梓强.光子晶体并行Matlab仿真研究与实现[J].计算机仿真,2008,25(9):312-315.
    [4]李传起,等.多信道异质结构光子晶体滤波器[J].光学精密工程,2015,23(8):2171-2177.
    [5]王巍,等.基于微环谐振器的超紧凑微波光子滤波器的设计[J].红外与激光工程,2013,42(8):2162-2166.
    [6]Ying Yuhai.Design of new kind of tunable micro ring resonator[J].Infrared and Laser Engineering,2016,45(6).
    [7]S Y Cho,R Soref.Apodized SCISSORs for filtering and switching[J].Optics Express,2008,16(23):19078-19090.
    [8]H Yan,et al.Compact optical add-drop multiplexers with parentsub ring resonators on SOI substrates[J].IEEE Photonics Technology Letters,2013,25(15):1462-1465.
    [9]M Mancinelli,et al.Coupled-resonator-induced-transparency concept for wavelength routing applications[J].Optics Express,2011,19(13):12227-12240.
    [10]J E Heebner,et al.Distributed and localized feedback in microresonator sequences for linear and nonlinear optics[J].Journal of the Optical Society of America B Optical Physics,2004,21(10):1818-1832.
    [11]佟存柱,等.布拉格反射波导半导体激光器的研究[J].中国光学,2015,8(3):480-498.
    [12]Liang Jufa,et al.Integrated optical sensor based on a FBG in parallel with a LPG[J].Chinese Optics,2016,9(3):329-334.
    [13]W Bogaerts,et al.Silicon microring resonators[J].Laser&Photonics Reviews,2012,6(1):47–73.
    [14]W Y Chen,et al.Periodic microring lattice as a bandstop filter[J].IEEE Photonics Technology Letters,2006,18(19):2041-2043.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700