布拉格反射波导半导体激光器的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Bragg reflection waveguide diode laser
  • 作者:佟存柱 ; 汪丽杰 ; 田思聪 ; 吴昊 ; 舒世立 ; 王立军
  • 英文作者:TONG Cun-zhu;WANG Li-jie;TIAN Si-cong;WU Hao;SHU Shi-li;WANG Li-jun;State Key laboratory of Luminescence and Application,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences;
  • 关键词:半导体激光 ; 布拉格反射波导 ; 光子带隙 ; 低发散角
  • 英文关键词:diode laser;;Bragg reflection waveguide;;photonic bandgap;;low divergence
  • 中文刊名:ZGGA
  • 英文刊名:Chinese Optics
  • 机构:中国科学院长春光学精密机械与物理研究所发光学及应用国家重点实验室;
  • 出版日期:2015-06-15
  • 出版单位:中国光学
  • 年:2015
  • 期:v.8;No.40
  • 基金:国家自然科学基金资助项目(No.61076064,No.61176046,No.61404138)
  • 语种:中文;
  • 页:ZGGA201503024
  • 页数:19
  • CN:03
  • ISSN:22-1400/O4
  • 分类号:172-190
摘要
高功率半导体激光器在固体或光纤激光器泵浦、材料加工、医疗、传感、空间通讯和国防上有着极其重要的应用,但传统半导体激光器面临垂直发散角大、椭圆光斑的难题,限制了其直接应用。为了降低激光器的垂直发散角,本项目采用布拉格反射波导结构,利用光子带隙导引替代传统的全反射进行光场限制,优化设计了多种布拉格反射波导激光器结构,并制备了高性能的激光器器件。首先,采用传输矩阵理论和布洛赫波近似的方法计算了布拉格反射波导的模式色散关系,发现通过控制腔模光场分布,可实现不同远场的激光输出。接着,针对布拉格波导光子带隙导引机制,深入研究了四分之一波长布拉格反射波导激光器、单边布拉格反射波导激光器的光场特性,弄清了影响此类激光器远场的本质因素,最终设计并验证了一种布拉格反射波导双光束激光器,激光器在垂直方向可输出两个对称的、近圆形光束,单光束垂直和侧向发散角半高全宽分别低至7.2°和5.4°。另外,通过调控光缺陷层,使激光器工作在受抑隧穿光子带隙导引机制下,实现了超窄的单光束激光输出,激光器单管连续输出功率超过4.6 W,垂直发散角最低降至4.9°(半高全宽)和9.8°(95%功率)。这种高功率、窄的圆形光束输出可以大幅降低半导体激光器的应用成本,提高泵浦或光纤耦合效率,具有广阔的应用前景。
        High power diode lasers are widely used for pumping of solid state lasers and fiber lasers,material processing,medical treatment,sensors,free-space optical communication,security and defense. However,the conventional diode lasers usually suffer from a large far-field divergence and strongly elliptical beam,which limit the direct applications. To improve the divergence,diode lasers based on Bragg reflection waveguide( BRW) are studied in this project,which utilizes the photonic bandgap( PBG) effect rather than the total internal reflection( TIR) to provide optical confinement. Several kinds of BRW lasers( BRLs) with different structures are designed and fabricated. First,the mode dispersion equation of the BRW is solved by the transfer matrix method and Bloch theory. The further analysis shows that the far-field distribution of BRW is determined by the mode shape in the cavity. In the case of Bragg form of PBG guidance,the optical field characteristics of a quarter-wave BRL and a single-sided BRL are studied. The essential reason affecting thefar-field distribution is investigated. Finally,a twin-beam laser based on BRW is designed and demonstrated.Almost all the emission power of this laser is concentrated in two near-circular lobes in the vertical direction.The full-width at half maximum( FWHM) divergence angles of one beam are as narrow as 7. 2° and 5. 4° respectively in the vertical and lateral direction. Furthermore,the high brightness BRL with a ultra-narrow circular output beam is demonstrated by controlling the defect layer. The ultra-low vertical divergence of 9. 8°with 95% power content and 4. 9° with the FWHM definition is realized. The maximum output power exceeds4. 6 W under continuous-wave operation at room temperature. The narrow circular beam emission from the BRL can greatly improve the pumping efficiency and optical fiber coupling efficiency without expensive beam shaping. It is believed that the BRLs have a promising application prospect.
引文
[1]KNAUER A,ERBERT G,STASKE R,et al..High-power 808 nm lasers with a super-large optical cavity[J].Semicond.Sci.Technol.,2005,20(6):621-624.
    [2]PIETRZAK A,WENZEL H,ERBERT G,et al..High-power laser diodes emitting light above 1100 nm with a small vertical divergence angle of 13[J].Opt.Lett.,2008,3(19):2188-2190.
    [3]MURAKAMI T,OHTAKI K,MATSUBARA H,et al..A very narrow-beam Al Ga As laser with a thin tapered thickness active layer(T3Laser)[J].IEEE J.Quantum Electron.,1987,23(6):712-719.
    [4]MALAG A,DABROWSKA E,TEODORCZYK M,et al..Asymmetric heterostructure with reduced distance from active region to heatsink for 810-nm range high-power laser diodes[J].IEEE J.Quantum Electron.,2012,48(4):465-471.
    [5]HUNG C T,LU T C.830-nm Al Ga As-In Ga As graded index double barrier separate confinement heterostructures laser diodes with improved temperature and divergence characteristics[J].IEEE J.Quantum Electron.,2013,49(1):127-132.
    [6]CHEN Y C,WATERS R G,DALBY R J.Single-quantum-well laser with 11.2 degree transverse beam divergence[J].Electron.Lett.,1990,26(17):1348-1350.
    [7]MA B,CHO S,LEE C,et al..High-power 660-nm Ga In P Al Ga In P laser diodes with low vertical beam divergence angles[J].IEEE Photon.Technol.Lett.,2005,17(7):1375-1377.
    [8]CRUMP P,PIETRZAK A,BUGGE F,et al..975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers[J].Appl.Phys.Lett.,2010,96(13):131110.
    [9]PIETRZAK A,CRUMP P,WENZEL H,et al..Combination of low-index quantum barrier and super large optical cavity designs for ultranarrow vertical far-fields from high-power broad-area lasers[J].IEEE J.Sel.Topics Quantum Electron.,2011,17(6):1715-1722.
    [10]CUI B F,GUO W L,DU X D,et al..A tunnel regenerated coupled multi-active-region large optical cavity laser with high quality beam[J].Chin.Phys.B,2012,21(9):094209.
    [11]SCIFRES D R,STREIFER W,BURNHAM R D.Leaky wave room-temperature double heterostructure Ga As:Ga AIAs diode laser[J].Appl.Phys.Lett.,1976,29(1):23-25.
    [12]SHCHUKIN V,LEDENTSOV N,POSILOVIC K,et al..Tilted wave lasers:a way to high brightness sources of light[J].IEEE J.Quantum Electron.,2011,47(7):1014-1027.
    [13]YEH P,YARIV A,HONG C S.Electromagnetic propagation in periodic stratified media.I.General theory[J].J.Opt.Soc.Am.,1977,67(4):423-438.
    [14]WEST B R,HELMY A S.Properties of the quarter-wave Bragg reflection waveguide:theory[J].J.Opt.Soc.Am.B.,2006,23(6):1207-1220.
    [15]LIANG W,XU Y,CHOI J M,et al..Engineering transverse Bragg resonance waveguides for large modal volume lasers[J].Opt.Lett.,2003,28(21):2079-2081.
    [16]ZHU L,SCHERER A,YARIV A.Modal gain analysis of transverse bragg resonance waveguide lasers with and without transverse defects[J].IEEE J.Quantum Electron.,2007,43(10):934-940.
    [17]LEDENTSOV N N,SHCHUKIN V A.Novel concepts for injection lasers[J].Opt.Eng.,2002,41(12):3193-3203.
    [18]NOVIKOV I I,KARACHINSKY L YA,MAXIMOV M V,et al..Single mode cw operation of 658 nm Al Ga In P lasers based on longitudinal photonic band gap crystal[J].Appl.Phys.Lett.,2006,88(23):231108.
    [19]KETTLER T,POSILOVIC K,KARACHINSKY L Y A,et al..High-brightness and ultranarrow-beam 850-nm Ga As/AlGa As photonic band crystal lasers and single-mode arrays[J].IEEE J.Sel.Topics Quantum Electron.,2009,15(3):901-908.
    [20]LIU L,QU H W,LIU Y,et al..Design and analysis of laser diodes based on the longitudinal photonic band crystal concept for high power and narrow vertical divergence[J].IEEE J.Sel.Topics Quantum Electron.,2015,21(1):1900107.
    [21]NOVIKOV I I,GORDEEV N YU,SHERNYAKOV YU M,et al..High-power single mode(>1 W)continuous wave operation of longitudinal photonic band crystal lasers with a narrow vertical beam divergence[J].Appl.Phys.Lett.,2008,92(10):103515.
    [22]MIAH M J,KETTLER T,POSILOVIC K,et al..1.9 W continuous-wave single transverse mode emission from 1060nm dge-emitting lasers with vertically extended lasing area[J].Appl.Phys.Lett.,2014,105(15):151105.
    [23]BIJLANI B J,HELMY A S.Bragg reflection waveguide diode lasers[J].Opt.Lett.,2009,34(23):3734-3736.
    [24]TONG C Z,BIJLANI B,ALALI S,et al..Characteristics of edge emitting Bragg reflection waveguide lasers[J].IEEE J.Quantum Electron.,2010,46(11):1605-1610.
    [25]TONG C Z,BIJLANI B J,ZHAO L J,et al..Mode selectivity in Bragg reflection waveguide lasers[J].IEEE Photon.Technol.Lett.,2011,23(14):1025-1027.
    [26]HELMY A S.Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications[J].Opt.Express,2006,14(3):1243-1252.
    [27]CREGAN R F,MANGAN B J,KNIGHT J C,et al..Single-mode photonic band gap guidance of light in air[J].cience,1999,285(5433):1537-1539.
    [28]LI J,CHIANG K S.Analysis of one-dimensional high-index guiding photonic bandgap waveguides[J].J.Opt.Soc.Am.B.,2009,26(11):2007-2015.
    [29]WANG L J,YANG Y,ZENG Y G,et al..High power single-sided Bragg reflection waveguide lasers with dual-lobed far field[J].Appl.Phys.B,107(3):809-812.
    [30]汪丽杰,佟存柱,曾玉刚,等.布拉格反射波导光子晶体激光器工作特性研究[C].全国光电子与量子电子学技术大会,北京,中国:NCOQE,2011:97.WANG L J,TONG C ZH,ZENG Y G,et al..Characteristics of Bragg reflection waveguide photonic bandgap lasers[C].National Conference on Optoelectronics and Quantum Electronics,Beijing,China:NCOQE,2011:97.(in Chinese)
    [31]汪丽杰,佟存柱,田思聪,等.非对称布拉格反射波导半导体激光器的特性研究[J].激光与光电子学进展,2013,50(9):091401.WANG L J,TONG C ZH,TIAN S C,et al..A study of characteristics of asymmetric Bragg reflection waveguide diode lasers[J].Laser&Optoelectronics Progress,2013,50(9):091401.(in Chinese)
    [32]WANG L J,TONG C Z,ZENG Y G,et al..Bragg reflection waveguide twin-beam laser[J].Laser Phys.,2013,23(10):105802.
    [33]WANG L J,TONG C Z,YANG Y,et al..Optical spectral characteristics of Bragg reflection waveguide lasers[J].Chinese J.Luminescence,2013,34(9):1227.
    [34]YANG Y,TONG C Z,WANG L J,et al..Tapered Bragg reflection waveguide edge emitting lasers with near circular twinbeam emission[J].Chinese Optics Letters,2013,11(12):1214021.
    [35]WANG L J,TONG C Z,WANG L J,et al..Far field behavior of Bragg reflection waveguide lasers[C].International Summer Session:Lasers and Their Applications,Changchun,P.R.China:OSA Sum Session,2011:Tu28.
    [36]WANG L J,TONG C Z,ZENG Y G,et al..High power 808 nm Bragg reflection waveguide lasers with ultralow beam divergence[C].Communications and Photonics Conference(ACP),Guangzhou,P.R.China:ACP Asia,2012:AS4H.5.
    [37]汪丽杰,佟存柱,曾玉刚,等.高亮度布拉格反射波导激光器[J].发光学报,2013,34(6):787-791.WANG L J,TONG C ZH,ZENG Y G,et al..High brightness Bragg reflection waveguide laser[J].Chinese J.Luminescence,2013,34(6):787-791.(in Chinese)
    [38]WANG L J,TONG C Z,TIAN S C,et al..High-power ultralow divergence edge-emitting diode laser with circular beam[J].IEEE J.Sel.Topics Quantum Electron.,2015,21(6):1501609.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700