糖基表面活性剂对埃洛石纳米流体驱油的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:THE EFFECT OF GLUCOSE-BASED SURFACTANTS ON ENHANCING OIL RECOVERY OF HALLOYSITE NANOFLUID
  • 作者:赵田红 ; 陈颖 ; 蒲万芬 ; 张艺文
  • 英文作者:Zhao Tianhong;Chen Ying;Pu Wanfen;Zhang Yiwen;College of Chemistry and Chemical Engineering, Southwest Petroleum University;
  • 关键词:埃洛石纳米颗粒 ; 糖基表面活性剂 ; 纳米流体 ; 分散稳定性 ; 采收率
  • 英文关键词:halloysite nanotube;;glucose-based surfactant;;nanofluid;;suspension stability;;oil recovery efficiency
  • 中文刊名:JXSY
  • 英文刊名:Speciality Petrochemicals
  • 机构:西南石油大学化学化工学院;
  • 出版日期:2019-05-18
  • 出版单位:精细石油化工
  • 年:2019
  • 期:v.36;No.210
  • 基金:“油气藏地质及开发工程”国家重点实验室(西南石油大学)资助项目(PLN161)
  • 语种:中文;
  • 页:JXSY201903009
  • 页数:6
  • CN:03
  • ISSN:12-1179/TQ
  • 分类号:38-43
摘要
针对纳米流体在驱油体系中存在的分散稳定性的问题,研究了糖基阳非离子表面活性剂(GDBB)对埃洛石纳米管(HNTs)分散稳定性的影响,并考察了GDBB/HNTs纳米颗粒的乳化,降低界面张力及改变油湿玻璃片(岩石模型)润湿性能力。研究表明,GDBB通过静电作用吸附在HNTs表面使其疏水性增大,分散稳定性提高,具有乳化,润湿反转,降低界面张力能力。配比为m(GDBB)∶m(HNTs)=1∶1时,改性埃洛石纳米流体可提高原油采收率最大,高达25.2%。
        In order to solve the problem of nanoparticle suspension stability in oil displacement,the effects of glucose non-ionic surfactant(GDBB)on the dispersion stability of the halloysite nanotubes(HNTs)were studied.The ability to alter the wettability of the glass(rock model),decrease the interfacial tension and emulsifying ability was also examined as supplement.The results show that this surfactant can increase the hydrophobicity of HNTs particles through electrostatic adsorption,improve the suspension stability,increase emulsion stability,change the wettability of oil wetted glass sheets,and reduce interfacial tension.When the optimum proportion(mass fraction)is obtained as m(GDBB)∶m(HNTs)=1∶1,the oil recovery of modified HNTs nanofluid can be increased to the maximum(25.2%).
引文
[1] 王雪松.三次采油技术的研究现状及进展分析[J].化工管理,2018(3):107.
    [2] Hendraningrat L,Torsaeter O.Metal oxide-based nanoparticles:revealing their potential to enhance oil recovery in different wettability systems [J].Applied Nanoscience.2015(5):181-199.
    [3] Rooustari A,Saffarzadeh S,Mohammadi,M.An evaluation of modified silica nanoparticles’ efficiency in enhancing oil recovery of light and intermediate oil reservoirs[J].Egyptian Journal of Petroleum,2013(22):427-433.
    [4] Rezvani H,Khalilnezhad A,Ganji P,et al.How ZrO2 nanoparticles improve the oil recovery by affecting the interfacial phenomena in the reservoir conditions?[J].Journal of Molecular Liquids,2018(252) :158-168.
    [5] Wu T,Fan J,C Li,et al.Palladium nanoparticles anchored on anatase titanium dioxide-black phosphorus hybrids with heterointerfaces:highly electroactive and durable catalysts for ethanol electrooxidation[J].Advanced Energy Materials,2018(8):11.
    [6] AfzaliTabar M,Alaei M,Bazmi M,et al.Facile and economical preparation method of nanoporous graphene/silica nanohybrid and evaluation of its Pickering emulsion properties for Chemical Enhanced Oil Recovery (C-EOR) [J].Fuel,2018(206):453-466.
    [7] Ershadi M,Alaei,M Rashidi,A Ramazani,et al.Carbonate and sandstone reservoirs wettability improvement without using surfactants for Chemical Enhanced Oil Recovery(C-EOR)[J].Fuel,2015(153):408-415.
    [8] Pasbakhsh P,Churchman G J,Keeling,J L.Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers [J].Applied Clay Science,2013(74):47-57.
    [9] Von Klitzing R,Stehl D,Pogrzeba T,et al.Halloysites Stabilized Emulsions for Hydroformylation of Long Chain Olefins[J].Advanced Materials Interfaces,2016(4):1600435.
    [10] Owoseni O,Nyankson E,Zhang Y,et al.Interfacial adsorption and surfactant release characteristics of magnetically functionalized halloysite nanotubes for responsive emulsions [J].Journal Colloid Interface Science,2016,(463):288-98.
    [11] Cao Huiying,Zhang Xuan,Ding Baiyong,et al.Synergistic action of TiO2 particles and surfactants on the foamability and stabilization of aqueous foams [J].RSC Advances,2017(7):44972.
    [12] Frédéric Loosli,Serge Stoll.Effect of surfactants,pH and water hardness on the surface properties and agglomeration behavior of engineered TiO2 nanoparticles [J].Environmental Science Nano,2017(4):203.
    [13] Soheila Javadiana,Ali Motaeea,Maryam Sharifia,et al.Dispersion stability of multi-walled carbon nanotubes in catanionic surfactant mixtures[J].Colloids and Surfaces A,2017(531):141-149.
    [14] Lun Huilin,Ouyang Jing,Yang Huaming.Enhancing dispersion of halloysite nanotubes via chemical modification[J].Physical & Chemical of Minerrals,2014,41(4):281-288.
    [15] Cavallaro G,Lazzara G,Milioto S.Exploiting the colloidal stability and solubilization ability of clay nanotubes/ionic surfactant hybrid nanomaterials[J].The Journal of Physical Chemistry C,2012(116):21932-21938.
    [16] Evgenity E,Tkalya Marcos,Ghislandi.The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocoposites[J].Current Opinion in Colloid & Interface Science,2012(17):225-232.
    [17] Jin Jingyu,Li Xiaoyan,Geng Jiafeng,et al.Insights into the complex interaction between hydrophilic nanoparticles and ionic surfactants at the liquid/air interface[J].Physical Chemistry Chemical Physics,2018,(20):15223.
    [18] Binks B P,Lumsdon S O.Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobie silica[J].Langmuir,2000(16):2539-2547.
    [19] Binks B P,Lumsdon S O.Influence of particle wettability on the type and stability of surfactant-free emulsions[J].Langmuir,2016(23):8622-8631.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700