化学成分和控冷工艺对连续油管用钢带状组织的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research of Effect of Chemical Component and Cooling Process on Bended Microstructure for Coiled Tubing
  • 作者:邹航 ; 徐进桥 ; 李利巍 ; 岳江波 ; 梅荣利 ; 甄瑞斌 ; 魏静
  • 英文作者:ZOU Hang;XU Jinqiao;LI Liwei;YUE Jiangbo;MEI Rongli;ZHEN Ruibin;WEI Jing;Wuhan Iron & Steel Co., Ltd.;Wuhan University of Science and Technology;
  • 关键词:连续油管 ; 带状组织 ; 控冷工艺
  • 英文关键词:coiled tubing;;banded microstructure;;cooling process
  • 中文刊名:HGZZ
  • 英文刊名:Welded Pipe and Tube
  • 机构:武汉钢铁有限公司;武汉科技大学;
  • 出版日期:2019-06-28
  • 出版单位:焊管
  • 年:2019
  • 期:v.42;No.284
  • 基金:湖北省中央引导地方科技发展专项“海洋耐腐蚀高强度管线钢制造技术创新平台”(项目编号2018ZYYD026)
  • 语种:中文;
  • 页:HGZZ201906003
  • 页数:6
  • CN:06
  • ISSN:61-1160/TE
  • 分类号:19-24
摘要
为了提高CT80连续油管的抗酸性能,对CT80钢带状组织和微区化学成分偏析进行了分析,研究了带状组织与微区化学成分偏析的对应关系及C含量和控冷工艺对带状组织的影响。结果表明,微区化学成分偏析是导致带状组织形成的根本原因;降低C含量或卷取温度,均可抑制CT80钢带状组织形成;当w (C)低至0.05%、卷取温度低至530℃时,带状组织基本消除, CT80钢抗酸性能良好。
        In order to improve the acid resistance of CT80 coiled tubing, the banded microstructure and micro-area chemical component segregation of CT80 steel were analyzed, the relationship between banded microstructure and micro-area chemical component segregation and the effects of C content and cooling process on banded microstructure were studied. The results showed that micro-area chemical component segregation was the root cause of the formation of banded microstructure;reduction of C content or coiling temperature could inhibit the formation of CT80 steel banded microstructure; when the C content was as low as 0.05%, and the coiling temperature as low as 530 ℃, the banded microstructure was basically eliminated and the acid resistance of CT80 steel was good.
引文
[1]李建军,毕宗岳. CT80连续油管抗HIC性能试验研究[J].焊管, 2012, 35(4):10-14.
    [2]孙娈芬,杜则裕,李桂芝,等.带状组织对管线钢抗氢诱发开裂(HIC)性能的影响[J].焊接技术, 2004, 33(6):13-14.
    [3] PARK G T, KOH S U, JUNG H G, et al. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel[J]. Corrosion Science, 2008, 50(7):1867-1871.
    [4] CHAWLA K K, RIGSBEE J M, WOODHOUSE J B.Hydrogen-induced cracking in two linepipe steels[J].Journal of Materials Science, 1986, 21(11):3777-3782.
    [5]彭先华.不同微观结构管线钢氢致开裂(HIC)行为研究[D].武汉:武汉科技大学, 2013.
    [6]周琦,季根顺,杨瑞成,等.管线钢中带状组织与氢致开裂[J].兰州理工大学学报, 2002, 28(2):30-33.
    [7] OFFERMAN S E, DIJK N H V, REKVELDT M T, et al. Ferrite/pearlite band formation in hot rolled medium carbon steel[J]. Metal Science Journal, 2002, 18(3):297-303.
    [8] CARRARD M, GREMAUD M, ZIMMERMANN M, et al. About the banded structure in rapidly solidified dendritic and eutectic alloys[J]. Acta Metallurgica et Materialia, 1992, 40(5):983-996.
    [9] KREBS B, GERMAIN L, HAZOTTE A, et al. Banded structure in Dual Phase steels in relation with the austenite-to-ferrite transformation mechanisms[J]. Journal of Materials Science, 2011, 46(21):7026-7038.
    [10] GROSSTERLINDEN R, KAWALLA R, LOTTER U,et al. Formation of pearlitic banded structures in ferritic-pearlitic steels[J]. Steel Research, 2016, 63(8):331-336.
    [11]倪满森.连铸坯的中心偏析问题[J].连铸, 2001(6):24-26.
    [12]梁文,吴润,黄海娥,等.碳含量对600 MPa级高强钢中心偏析和带状组织的影响[J].钢铁钒钛, 2018, 39(3):154-162.
    [13]冯光宏,李岩,戴蓓蓉,等.在未再结晶区大压下后加速冷却工艺对钢板带状组织的影响[J].钢铁研究学报, 1999(6):14-17.
    [14]蔡珍,黄运华,张跃,等.冷却速度对铁素体-珠光体带状组织的影响机制[J].钢铁研究学报, 2012, 24(6):25-30.
    [15]范建文,谢瑞萍,张维旭,等.普通C-Mn钢超细晶中厚板的带状组织[J].钢铁, 2004, 39(8):100-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700