超微型全石英光纤Fizeau腔水下激波压力传感器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Miniature Underwater Shock Wave Pressure Sensor Based on All-Silica Optical Fiber Fizeau Cavity
  • 作者:王俊杰 ; 刘劲 ; 傅正义 ; 褚程雷 ; 杨明红
  • 英文作者:Wang Junjie;Liu Jing;Fu Zhengyi;Chu Chenglei;Yang Minghong;State Engineering Laboratory for Optical Fiber Sensing Technology,Wuhan University of Technology;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology;
  • 关键词:传感器 ; 光纤压力传感器 ; 光纤Fizeau腔 ; 高频响动态压力 ; 超微型压力探针
  • 英文关键词:sensors;;optical fiber pressure sensor;;optical fiber Fizeau cavity;;high frequency response dynamic pressure;;miniature pressure probe
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:武汉理工大学光纤传感技术国家工程实验室;武汉理工大学材料复合新技术国家重点实验室;
  • 出版日期:2018-11-13 10:55
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.443
  • 基金:国家重点研发计划重点专项(2017YFB0405501);; 武汉理工大学材料复合新技术国家重点实验室重点开放基金(2016-KF-3)
  • 语种:中文;
  • 页:GXXB201902027
  • 页数:9
  • CN:02
  • ISSN:31-1252/O4
  • 分类号:222-230
摘要
介绍了一种制作在光纤端头的超微型Fizeau腔水下激波压力传感器,给出了传感器的基本理论和制作工艺;采用被动零差解调技术对该光纤Fizeau腔在冲击压力波作用下的瞬态速变干涉相位进行解调;采用活塞式压力计和聚焦式电磁冲击波源进行静态和动态定标实验。在0~60 MPa压力量程范围内,系统的定标结果如下:满量程时的线性度、重复性、回程误差和基本误差分别为3.26%、0.01153%、0.07%和3.407%,动态响应时间小于0.75μs。
        A miniature underwater shock wave pressure sensor based on optical fiber Fizeau cavity is described. The basic theory and fabrication process of this sensor are given. This transient interference phase of the Fizeau cavity acted by shock pressure wave is demodulated by using passive homodyne demodulation technique. A static calibration test and a dynamic calibration test are conducted using a piston-type pressure calibration machine and a focusing-type electro-magnetic shock wave source. The results indicate that the linearity, repeatability, hysteresis, and intrinsic error of the sensor within the full pressure range of 0-60 MPa are 3.26%, 0.01153%, 0.07%, and 3.407%, respectively. The dynamic response time is less than 0.75 μs.
引文
[1] Beard P C, Mills T N. Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer[J]. Applied Optics, 1996, 35(4): 663-675.
    [2] Vandevender J P. The resistive phase of a high-voltage water spark[J]. Journal of Applied Physics, 1978, 49(5): 2616-2620.
    [3] Chen W M, Lei X H, Zhang W, et al. Recent progress of optical fiber Fabry-Perot sensors[J]. Acta Optica Sinica, 2018, 38(3): 0328010. 陈伟民, 雷小华, 张伟, 等. 光纤法布里-珀罗传感器研究进展[J]. 光学学报, 2018, 38(3): 0328010.
    [4] Liao Y B, Yuan L B, Tian Q. The 40 years of optical fiber sensors in China[J]. Acta Optica Sinica, 2018, 38(3): 0328001. 廖延彪, 苑立波, 田芊. 中国光纤传感40年[J]. 光学学报, 2018, 38(3): 0328001.
    [5] Song P, Jin Z G, Li A, et al. Refractive index measurement of liquid based on open fiber Fabry-Perot interferometer[J]. Chinese Journal of Lasers, 2017, 44(12): 1204007. 宋鹏, 荆振国, 李昂, 等. 基于光纤开放式法布里-珀罗干涉仪的液体折射率测量[J]. 中国激光, 2017, 44(12): 1204007.
    [6] Beard P C, Mills T N. Miniature optical fibre ultrasonic hydrophone using a Fabry-Perot polymer film interferometer[J]. Electronics Letters, 1997, 33(9): 801-803.
    [7] Beard P C, Hurrell A M, Mills T N. Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47(1): 256-264.
    [8] Morris P, Hurrell A, Shaw A, et al. A Fabry-Pérot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure[J]. The Journal of the Acoustical Society of America, 2009, 125(6): 3611-3622.
    [9] Wang J J, Wang M, Xu J, et al. Underwater blast wave pressure sensor based on polymer film fiber Fabry-Perot cavity[J]. Applied Optics, 2014, 53(28): 6494-6502.
    [10] Rao Y J, Jackson D A, Jones R, et al. Development of prototype fiber-optic-based Fizeau pressure sensors with temperature compensation and signal recovery by coherence reading[J]. Journal of Lightwave Technology, 1994, 12(9): 1685-1695.
    [11] Watson S, MacPherson W N, Barton J S, et al. Investigation of shock waves in explosive blasts using fibre optic pressure sensors[J]. Measurement Science and Technology, 2006, 17(6): 1337-1342.
    [12] Parkes W, Djakov V, Barton J S, et al. Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air[J]. Journal of Micromechanics and Microengineering, 2007, 17(7): 1334-1342.
    [13] Watson S, Gander M J, MacPherson W N, et al. Laser-machined fibers as Fabry-Perot pressure sensors[J]. Applied Optics, 2006, 45(22): 5590-5596.
    [14] Xu J C, Pickrell G, Wang X W, et al. A novel temperature-insensitive optical fiber pressure sensor for harsh environments[J]. IEEE Photonics Technology Letters, 2005, 17(4): 870-872.
    [15] Wang W H, Wu N, Tian Y, et al. Optical pressure/acoustic sensor with precise Fabry-Perot cavity length control using angle polished fiber[J]. Optics Express, 2009, 17(19): 16613-16618.
    [16] Wu N, Wang W H, Tian Y, et al. Low-cost rapid miniature optical pressure sensors for blast wave measurements[J]. Optics Express, 2011, 19(11): 10797-10804.
    [17] Wang W H, Wu N, Tian Y, et al. Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm[J]. Optics Express, 2010, 18(9): 9006-9014.
    [18] Zou X T, Wu N, Tian Y, et al. Rapid miniature fiber optic pressure sensors for blast wave measurements[J]. Optics and Lasers in Engineering, 2013, 51(2): 134-139.
    [19] Wang J J, Jiang D S, Xie G M, et al. Research of the planar optical fiber Bragg grating hydrophone probe[J]. Acta Acustica, 2007, 32(4): 343-348. 王俊杰, 姜德生, 谢官模, 等. 一种平面型光纤光栅水听器探头技术的研究[J]. 声学学报, 2007, 32(4): 343-348.
    [20] Damion P. Means of dynamic calibration for pressure transducers[J]. Metrologia, 1994, 30(6): 743-746.
    [21] Fan S C, Zhou H M. Signal and testing technology[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2002: 352. 樊尚春, 周浩敏. 信号与测试技术[M]. 北京: 北京航空航天大学出版社, 2002: 352.
    [22] Jiang S J, Zeng B, Wang H Z, et al. A study on the theoretical model of white-light interfered EFPI optical fiber strain sensor[J]. Journal of Transcluction Technology, 2005, 18(1): 165-170. 江绍基, 曾斌, 汪河洲, 等. 白光干涉型EFPI光纤应变传感器理论模型的研究[J]. 传感技术学报, 2005, 18(1): 165-170.
    [23] MacPherson W N, Kidd S R, Barton J S, et al. Phase demodulation in optical fibre Fabry-Perot sensors with inexact phase steps[J]. Proceedings of the IEEE, 1997, 144(3): 130-133.
    [24] Reichenberger H. Lithotripter systems[J]. Proceedings of the IEEE, 2002, 76(9): 1236-1246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700