基于应力分析Ni-Fe合金支撑固体氧化物燃料电池的结构稳定性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structural Stability of Ni-Fe Supported Solid Oxide Fuel Cells Based on Stress Analysis
  • 作者:李凯 ; 李霄 ; 李箭 ; 谢佳苗
  • 英文作者:LI Kai;LI Xiao;LI Jian;XIE Jia-Miao;School of Materials Science and Engineering, Xi'an Shiyou University;State Key Laboratory for Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology;Department of Engineering Mechanics, Northwestern Polytechnical University;
  • 关键词:金属支撑固体氧化物燃料电池 ; Ni-Fe合金支撑体 ; 热应力
  • 英文关键词:metal supported solid oxide fuel cell;;Ni-Fe alloy support;;thermal stress
  • 中文刊名:WGCL
  • 英文刊名:Journal of Inorganic Materials
  • 机构:西安石油大学材料科学与工程学院;华中科技大学材料科学与工程学院材料成型及模具技术国家重点实验室;西北工业大学工程力学系;
  • 出版日期:2019-06-10 17:03
  • 出版单位:无机材料学报
  • 年:2019
  • 期:v.34;No.236
  • 基金:国家自然科学基金青年基金(51702258);; 华中科技大学材料成型与模具技术国家重点实验室开放课题研究基金(P2017-005);; 陕西省教育厅专项科研计划项目(17JK0598)~~
  • 语种:中文;
  • 页:WGCL201906005
  • 页数:7
  • CN:06
  • ISSN:31-1363/TQ
  • 分类号:41-47
摘要
本文以NiO和Fe_2O_3为原料,应用流延、丝网印刷、高温共烧结和原位还原的工艺制备多孔金属支撑固体氧化物燃料电池(MS-SOFC)。系统研究了支撑体中Fe含量对MS-SOFC的残余应力、抗弯断裂强度和电化学稳定性的影响。结果表明,在NiO中加入10at%Fe_2O_3,使得支撑体致密化开始温度提高到937℃,残余应力和变形翘曲度分别低至70 MPa和0.15 mm;电池还原之后,Ni_(0.9)Fe_(0.1)支撑SOFC骨架表面孔隙率为40.22%,抗弯断裂强度达到最大值62.34 MPa;电化学测试过程中,Ni_(0.9)Fe_(0.1)支撑SOFC在650℃下,以H_2为燃料,在400 mA·cm~(–2)电流密度下可以稳定运行60 h,主要因为电池具有较高的抗弯断裂强度,能够抵抗运行过程中的热应力。该研究工作为MS-SOFC结构设计和性能稳定性优化提供重要的理论依据。
        Metal supported solid oxide fuel cells(MS-SOFCs)were fabricated with NiO and Fe_2O_3 by tape casting,screen printing,sintering and in-situ reducing process with NiO and Fe_2O_(3.)The fraction effects of Fe on residual stress bending strength and electrochemical stability of MS-SOFC were systematically investigated.The addition of 10at%Fe_2O_3 in characteristic support elevated densification starting temperature up to 937℃,and reduced residual stress and buckling deformation to 70 MPa and 0.15 mm,respectively.After reduction,Ni_(0.9)Fe_(0.1)supported SOFC presented the maximum bending strength of 62.34 MPa due to the lowest porosity of 40.22%in metal scaffold.MS-SOFC steadily operated for 60 h in durability test with H_2 as the fuel at a constant current density of 400 mA·cm~(–2) and 650℃.This superior performance was attributed to the higher fracture strength of Ni_(0.9)Fe_(0.1 )alloy support SOFC,which effectively resisted the thermal stress in operation.This research provides a promising theoretical basis for structure design and optimization of MS-SOFC.
引文
[1]TUCKER M C.Progress in metal-supported solid oxide fuel cells:a review.Journal of Power Sources,2010,195(15):4570-4582.
    [2]ZHOU Y C,YE X F,WANG S R.All symmetrical metal supported solid oxide fuel cells.Journal of Inorganic Materials,2016,31(7):769-772.
    [3]HUI S,YANG D,WANG Z,et al.Metal-supported solid oxide fuel cell operated at 400-600℃.Journal of Power Sources,2007,167(2):336-339.
    [4]ZHANG S L,YU H X,LI C X,et al.Thermally sprayed high performance porous metal-supported solid oxide fuel cells with nanostructured La0.6Sr0.4Co0.2Fe0.8O3 cathodes.Journal of Materials Chemistry A,2016,4(19):7461-7468.
    [5]ZHOU Y C,SONG S D,HAN M F.Development of metalsupported SOFC.Engineering Sciences,2013,15(2):28-32.
    [6]MORI M,YAMAMOTO T,ITOH H et al.Thermal expansion of nickel-zirconia anodes in solid oxide fuel cells during fabrication and operation.Journal of Electrochemical Society,1998,145(4):1374-1381.
    [7]WANG Y,JIANG W,LUO Y,et al.Evolution of thermal stress and failure probability during reduction and reoxidation of solid oxide fuel cell.Journal of Power Sources,2017,371:65-76.
    [8]XIE J M,WANG F H.Thermal stress analysis of solid oxide fuel cell with anode functional layer.Journal of Inorganic Materials,2017,32(4):400-406.
    [9]SAIED M,AHMED K,AHMED M.et al.Investigations of solid oxide fuel cells with functionally graded electrodes for high performance and safe thermal stress.International Journal of Hydrogen Energy,2017,42(24):15887-15902.
    [10]CELIK S,IBRAHIMOGLU B,MAT M,et al.Micro level two dimensional stress and thermal analysis anode/electrolyte interface of a solid oxide fuel cell.International Journal of Hydrogen Energy.2015,40(24):7895-7902.
    [11]CHARLAS B,FRANDSEN H L,BRODERSEN K,et al.Residual stresses and strength of multilayer tape cast solid oxide fuel and electrolysis half-cells.Journal of Power Sources,2015,288:243-252.
    [12]VILLANOVA J,SICARDY O,FORTUNIER R,et al.Determination of global and local residual stresses in SOFC by X-ray diffraction.Nuclear Instruments and Methods in Physics Research B,2010,268(3/4):282-286.
    [13]MALZBENDER J,STEINBRECH RW,SINGHEISER L.A review of advanced techniques for characterising SOFC behaviour.Fuel Cells,2009,9(6):785-793.
    [14]ZENG S M,PARBEY J,YU G S,et al.Thermal stress analysis of sulfur deactivated solid oxide fuel cells.Journal of Power Sources,2018,379:134-143.
    [15]WANG K P,HUANG Y Y,CHANDRA A,et al.Interfacial shear stress,peeling stress,and die cracking stress in trilayer electronic assemblies.IEEE Transactions on Components and Packaging Technologies,2000,23(2):309-316.
    [16]LIU L,KIM G Y,CHANDRA A.Modeling of thermal stresses and lifetime prediction of planar solid oxide fuel cell under thermal cycling conditions.Journal of Power Sources,2010,195(8):2310-2318.
    [17]CLAGUE R,MARQUIS A J,BRANDON N P.Finite element and analytical stress analysis of a solid oxide fuel cell.Journal of Power Sources,2012,210:224-232.
    [18]DAMM D L,FEDOROY A G.Reduced-order transient thermal modeling for SOFC heating and cooling.Journal of Power Sources,2006,159(2):956-967.
    [19]HAJIMOLANA S A,TONEKABONIMAOGHADAM S M,HUSSAIN M A,et al.Thermal stress management of a solid oxide fuel cell using neural network predictive control.Energy,2013,62(30):320-329.
    [20]CHIANG L K,LIU H C,SHIU Y H,et al.Thermo-electrochemical and thermal stress analysis for an anode-supported SOFC cell.Renew Energy,2008,33(12):2580-2588.
    [21]VAIDYA S,KIM J H.Finite element thermal stress analysis of solid oxide fuel cell cathode microstructures.Journal of Power Sources,2013,225:269-276.
    [22]ZENG S,XU M,PARBEY J,et al.Thermal stress analysis of a planar anode-supported solid oxide fuel cell:effects of anode porosity.Internal Journal of Hydrogen Energy,2017,42:20239-20248.
    [23]LI K,WANG X,JIA L C,et al.High performance Ni-Fe alloy support SOFCs fabricated by low cost tape casting-screen printingcofiring process.International Journal of Hydrogen Energy,2014,39(34):19747-19752.
    [24]JU Y W,ETO H,INAGAKI T,et al.Preparation of Ni-Fe bimetallic porous anode support for solid oxide fuel cells using LaGaO3based electrolyte film with high power density.Journal of Power Sources,2010,195(19):6294-6300.
    [25]ZHU T L,DU X J,BU Y F,et al.Validation and electrochemical characterization of LSCF cathode deposition on metal supported SOFC.Journal of the Electrochemical Society,2017,164(13):1489-1494.
    [26]KONG Y,HUA B,PU J,et al.A cost-effective process for fabrication of metal-supported solid oxide fuel cells.International Journal of Hydrogen Energy,2010,35(10):4592-4596.
    [27]WANG X,LI K,JIA L C,et al.Porous Ni-Fe alloys as anode support for intermediate temperature solid oxide fuel cells:I.Fabrication,redox and thermal behaviors.Journal of Power Sources,2015,277:474-479.
    [28]LI K,JIA L C,WANG X,et al.Methane on-cell reforming in nickel-iron alloy supported solid oxide fuel cells.Journal of Power Sources,2015,284:446-451.
    [29]LI K,JIA L C,WANG X,et al.Enhanced methane steam reforming activity and electrochemical performance of Ni0.9Fe0.1-supported solid oxide fuel cells with infiltrated Ni-TiO2 particles.Scientific Reports,2016,6:35981-1-9.
    [30]MENG L,WANG F Z,WANG A,et al.High performance La0.8Sr0.2MnO3-coated Ba0.5Sr0.5Co0.8Fe0.2O3 cathode prepared by a novel solid-solution method for intermediate temperature solid oxide fuel cells.Chinese Journal of Catalysis,2014,35(1):38-42.
    [31]MOON H,KIM S,HYUN S,et al.Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing.International Journal of Hydrogen Energy,2008,33(6):1758-1768.
    [32]MOLLA TT,BJ?RK R,OLEVSKY E,et al.Multi-scale modeling of shape distortions during sintering of bilayers.Computational Materials Science,2014,88(20):28-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700