反应吸附强化焦炉煤气蒸汽重整制氢技术评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of ReSER-COG hydrogen production technology
  • 作者:刘昊 ; 吴嵘 ; 吴素芳
  • 英文作者:LIU Hao;WU Rong;WU Su-fang;College of Chemical and Biological Engineering, Zhejiang University;
  • 关键词:焦炉煤气 ; 制氢 ; 吸附作用 ; 计算机模拟 ; 技术性能评价
  • 英文关键词:coke oven gas;;hydrogen production;;adsorption;;computer simulation;;technical performance evaluation
  • 中文刊名:TRQH
  • 英文刊名:Natural Gas Chemical Industry
  • 机构:浙江大学化学工程与生物工程学院;
  • 出版日期:2018-12-25
  • 出版单位:天然气化工(C1化学与化工)
  • 年:2018
  • 期:v.43;No.243
  • 基金:国家自然科学基金(21276234)
  • 语种:中文;
  • 页:TRQH201806021
  • 页数:6
  • CN:06
  • ISSN:51-1336/TQ
  • 分类号:88-93
摘要
以实验研究结果为基础,建立了反应吸附强化焦炉煤气水蒸汽重整制氢(ReSER-COG)工艺流程,并进行了技术性能评价计算。计算过程采用化工模拟软件Aspen Plus,基于不同反应温度、水碳比、钙碳比等工艺操作参数,对各个操作单元进行物料平衡和能量平衡计算,并考察制氢性能指标产氢率和COG能量转化效率受制氢工艺操作参数影响的敏感度分析,得到最优操作参数范围。分析结果表明:ReSER-COG制氢工艺在反应温度600℃,水碳物质的量比4,钙碳物质的量比2.75,常压反应的条件下,1m~3COG可获得最大产氢气率为1.8m~3,且能量转化效率达到最高76.3%。与现有的COG制氢技术相比,ReSERCOG制氢技术在同样条件下,可以得到较高的产氢率和COG能量转化效率,具备较强的技术优势。
        Based on the experimental results, a reactive sorption enhanced coke oven gas(COG)steam reforming hydrogen production process(ReSER-COG) was established, and the technical performance evaluation was carried out according to the simulation results. The calculation of material balance and energy balance for each operation unit was completed based on different operation parameters such as temperature, molar ratio of water to carbon and calcium to carbon by using chemical process simulation software Aspen plus. Then the sensitivity analysis between the operation parameters and performance evaluation indices of hydrogen production including yield of hydrogen and efficiency of energy conversion was finished to get the optimum range of operation parameters. The results showed that under 600℃, steam tocarbonmolar ratio of 4, calcium to carbonmolar ratio of 2.75 and atmosphere pressure, ReSER-COG could obtain the maximumhydrogen yield of 1.8Nm~3 per Nm~3 COG and the maximum energy conversion efficiency of 76.3%. Compared with the existing COG hydrogen production technologies, ReSER-COG process could obtain higher hydrogenyield and energy conversionefficiency in the same conditions, which makes it have strong technical advantages.
引文
[1]赵铎.大型焦炉煤气制氢生产中的问题分析及应对措施[J].天然气化工-C1化学与化工,2015,40(3):56-58+64.
    [2]曹德或,粟莲芳.焦炉煤气变压吸附制氢工艺的应用[J].煤气与热力,2008,28(10):23-25.
    [3]王海风,张春霞,胡长庆,等.钢铁企业焦炉煤气利用的一个重要发展方向[J].钢铁研究学报,2008,20(3):1-4.
    [4]Bermudez J M,Arenillas A,Luque R,Menendez J A.An overview of novel technologies to valorize coke oven gas surplus[J].Fuel Process Technol,2013,110:150-9.
    [5]Yue B,Wang X,Ai X.Catalytic reforming of model tar compounds from hot coke oven gas with low steam/carbon ratio over Ni/MgO-Al2O3catalysts[J].Fuel Process Technol,2010,91:1098-1104.
    [6]Cheng H W,Lu X G,Ding W Z.Catalytic reforming of model tar compounds fromhot cokeoven gas over Pd promoted Ni/Mg(Al)O catalysts[J].Adv Mater Res,2011,197-198:711-714.
    [7]Chen T,Zhao H,Xie Z.Electrical conductivity and oxygen permeability of Ce0.8Sm0.2O2+δ-PrBaCo2O5+δdualphase composites[J].Int J Hydrogen Energy,2012,37:5277-5285.
    [8]Yu F,Yue B,Wang X.Hydrocracking of tar components from hot cokeoven gas over a Ni/Ce-ZrO2/γ-Al2O3catalyst at atmosphericpressure[J].Chin J Catal,2009,30(7):690-696.
    [9]李义良.超高纯氢的制备[J].低温与特气,1996,(3):38-40.
    [10]田文中,李燕燕,付娟.焦炉煤气膜分离提取高纯H2的方法[J].上海煤气,2013,(4):8-9.
    [11]Yang Z,Zhang Y,Wang X.Steam reforming of coke oven gas for hydrogen production over a NiO/MgO solid solution catalyst[J].Energy Fuels,2009,24:785-788.
    [12]Cheng H,Yue B,Wang X.Hydrogen production from simulated hot coke oven gas by catalytic reforming over Ni/Mg(Al)O catalysts[J].J Nat Gas Chem,2009,18(2):225-231.
    [13]Cheng H W,Lu X G,Ding W Z.Steam reforming of simulated coke oven gas over Ni/Al2O3-MgO catalysts for syngas production[J].Adv Mater Res,2011,152:817-820.
    [14]Zhang Y,Li Q,Shen P.Hydrogen amplification of coke oven gas by reforming of methane in a ceramic membrane reactor[J].Int J Hydrogen Energy,2008,33:3311-3319.
    [15]Chen H,Zhang Y,Lu X.Hydrogen production from simulated hot coke oven gas by using oxygen-permeable ceramics[J].EnergyFuels,2009,23:414-421.
    [16]Cheng H W,Lu X G,Liu X.Partial oxidation of simulated hot coke oven gas to syngas over Ru-Ni/Mg(Al)O catalyst in a ceramic membrane reactor[J].J Nat Gas Chem,2009,18(4):467-473.
    [17]Wang X,Wang T.Hydrogen amplification from coke oven gas using a CO2adsorption enhanced hydrogen amplification reactor[J].Int JHydrogen Energy,2012,37:4974-4986.
    [18]Wu R,Wu S F.The ReSER-COG process for hydrogen production on a Ni-CaO/Al2O3complex catalyst[J].Int JHydrogen Energy,2013,38:11818-11825.
    [19]姜薇,马瑞,赵峰,等.天然气水蒸汽转化制氢的Aspen Plus模拟分析[J].天然气化工-C1化学与化工,2013,38(1):57-59.
    [20]闫龙.天然气蒸汽转化制氢装置节能降耗技术改造[J].天然气化工-C1化学与化工,2016,41(3):95-97.
    [21]李庆勋,刘晓彤,刘克峰,等.大规模工业制氢工艺技术及其经济性比较[J].天然气化工-C1化学与化工,2015,40(1):78-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700