基于FMEA-LEC的天然气压缩机空气介质试验风险分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Risk Analysis for FMEA-LEC Based Nature Gas Compressor Test with Air
  • 作者:卢文青 ; 余志红 ; 陈丹霜 ; 汪敏 ; 叶君超
  • 英文作者:LU Wenqing;YU Zhihong;CHEN Danshuang;WANG Min;YE Junchao;SINOPEC Key Laboratory of Petroleum Equipment,Institute of Sinopec Oilfield Equipment Corporation;
  • 关键词:天然气压缩机 ; FMEA-LEC ; 空气 ; 风险 ; 积炭 ; 腐蚀
  • 英文关键词:nature gas compressor;;FMEA-LEC;;air;;risk;;charcoal accumulation;;corrosion
  • 中文刊名:GYAF
  • 英文刊名:Industrial Safety and Environmental Protection
  • 机构:中石化石油机械股份有限公司研究院中石化石油机械装备重点实验室;中国劳动关系学院安全工程系;中石化石油机械股份有限公司三机分公司;
  • 出版日期:2018-12-10
  • 出版单位:工业安全与环保
  • 年:2018
  • 期:v.44
  • 基金:国家重大科技专项(2016ZX05038);; 工业和信息化部科技项目(201503A2)
  • 语种:中文;
  • 页:GYAF201812007
  • 页数:4
  • CN:12
  • ISSN:42-1640/X
  • 分类号:29-32
摘要
压缩机出厂试验时难以用天然气进行试验,通常采用空气作为试验介质。但是,空气成分与天然气有很大差别,对压缩机进行试验时,其产生的风险与天然气不同。针对此问题,文章对压缩机试验介质改变后试验过程的风险源进行了识别,提出了利用FMEA-LEC方法分析试验过程存在的风险水平。研究表明采用空气试验时,气缸温度容易过高,易产生积炭问题,引发严重后果;并且空气中氧气成分是造成管路腐蚀的重要因素。最后,提出了13项控制措施,保障压缩机试验过程的安全。
        It is difficult for manufacturer to test compressor for sale with nature gas and instead,the cheap air is usually employed to test compressor. However,the compositions of air are very different from those of nature gas and therefore,risks produced by using air are also different from those by using nature when compressor is tested. In order to solve the problem,risk sources are identified during the test process as test medium of compressor has changed and FMEA-LEC was applied to analyze the risk level of test process. Research shows that the temperature of cylinder is vulnerable to become too high when using air,so that charcoal accumulation produced will result in serious consequences and meanwhile,as you know,oxygen in the air is the main composition bringing about corrosion of pipe.Finally,13 control measurements are put forward in this paper to ensure the safety of the test process.
引文
[1]BAYBUTT P. Competency requirements for process hazard analysis(PHA)teams[J]. Journal of Loss Prevention in the Process Industries,2015,33:151-158.
    [2]ISIMITE J,RUBINI P. A dynamic HAZOP case study using the Texas City refinery explosion[J]. Journal of Loss Prevention in the Process Industries,2016,40(6):496-501.
    [3]邓曼. FTA和FMECA综合法对常压炉的风险分析[J].工业安全与环保,2006,32(12):51-53.
    [4]BAYBUTT P. Requirements for improved process hazard analysis(PHA)methods[J]. Journal of Loss Prevention in the Process Industries,2014,32(7):182-191.
    [5]LANGE K A.潜在失效模式及后果分析(FMEA)参考手册(第三版)[M].中国汽车技术研究中心,译.
    [6]刘辉,付洪军.基于PHA-LEC法金属矿山盲竖井工程安全分析研究[J].工业安全与环保,2010,36(9):40-42.
    [7]胥晋,谭新民. CNG压缩机出厂的空气替代性能试验[C]//四川省汽车工程学会. CNG汽车加气站实用交流会论文选编,2005.
    [8]廖定友.往复式空气压缩机管线爆炸原因分析及应对措施[J].化肥设计,2011,49(3):44-45.
    [9]董佳鑫.徐深气田集输过程中的抗酸材质及抗蚀方法[J].油气田地面工程,2013(6):118-118.
    [10]左兴凯.雅克拉凝析气田腐蚀状况与分析[J].石油钻探技术,2005,33(4):60-62.
    [11]美国石油学会. Reciprocating compressor for petroleum,chemical,and gas industry services,API 618[S]. Washington D C,USA:API Publishing Service,2007.
    [12]中国船舶重工集团公司第七○四研究所.船用高压活塞空气压缩机:GB/T 12929-2008[S].北京:中国标准出版社,2008:1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700