微藻/核桃壳混合热解需热量及制备芳烃研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study on thermal demanding and preparation of aromatics of mixed pyrolysis of Nannochloropsis sp./walnut shell
  • 作者:苗鹏 ; 常国璋 ; 燕希敏 ; 胡修德 ; 郭庆杰
  • 英文作者:MIAO Peng;CHANG Guozhang;YAN Ximin;HU Xiude;GUO Qingjie;Key Laboratory of Clean Chemical Processing of Shandong Province, College of Chemical Engineering, Qingdao University of Science & Technology;State Key Laboratory of High-efficiency Utilization of Coal & Green Chemical Engineering, Ningxia University;
  • 关键词:生物能源 ; 热解 ; 热量耦合 ; 分子筛 ; 芳烃
  • 英文关键词:bioenergy;;pyrolysis;;thermal coupling;;moleclar sieves;;aromatic hydrocarbons
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:青岛科技大学化工学院清洁化工过程山东省高校重点实验室;宁夏大学省部共建煤炭高效利用与绿色化工国家重点实验室;
  • 出版日期:2017-12-05 10:31
  • 出版单位:化工学报
  • 年:2018
  • 期:v.69
  • 基金:山东省研究生教育创新计划项目(SDYC13010);; 省部共建煤炭高效利用与绿色化工国家重点实验室开放基金项目(2017-K22);; 山东省自然科学基金重点项目(ZR2015QZ02);; 宁夏回族自治区重点研发计划项目(2016BY005);; 宁夏回族自治区引进科技创新团队~~
  • 语种:中文;
  • 页:HGSZ201805039
  • 页数:12
  • CN:05
  • ISSN:11-1946/TQ
  • 分类号:339-350
摘要
利用热重分析仪(TG)、气相色谱-质谱联用仪(GC/MS)与固定床反应器,考察了微藻、核桃壳及混合物主要热解阶段的需热量特性,以及混合比、温度、催化剂种类对二者混合热解制备芳烃的影响规律。结果表明:在不同升温速率下,核桃壳热解在180~270℃和380~485℃处存在两个吸热峰,整体表现为吸热效应(378.56~596.45k J·kg~(-1));微藻热解在280~450℃处存在一个放热峰,整体表现为放热效应(-814.76~~(-1)191.52 k J·kg~(-1))。微藻/核桃壳热解呈现较低的放热效应(-99.05~~(-1)58.04 k J·kg~(-1)),表明二者混合热解可以实现一定程度的热量耦合。微藻/核桃壳热解在制备芳烃上表现出明显的协同效应,且芳烃相对含量在600℃、混合比1:1下达到最大值,为20.51%;加入Cu/HZSM-5可进一步提高混合热解的芳烃相对含量,达到35.74%。为微藻与核桃壳的高值化利用提供了新思路。
        In this study, Nannochloropsis sp.(NS) and walnut shell(WS) were used as raw materials for mixed pyrolysis, and the characteristics of thermal demanding during pyrolysis of NS, WS and NS/WS were initially investigated by a thermogravimetric analyzer and a fixed-bed reactor. Then the effects of mass ratio, reaction temperature, and catalysts on the preparation of aromatic hydrocarbons from NS/WS mixed pyrolysis were studied by a GC/MS method. Results showed that the two endothermic peaks were observed from WS pyrolysis at 180—270℃ and 380—485℃, the overall performance of WS pyrolysis took on the endothermic effect with thermal demanding values of 378.56—596.45 k J·kg~(-1) under different heating rates. An endothermic peak was obtained from NS pyrolysis at 280—450℃, the overall performance of NS pyrolysis took on exothermic effect with thermal demanding values of-814.76—~(-1)191.52 k J·kg~(-1). The pyrolysis of NS/WS presented low exothermic effect with thermal demanding values of-99.05—~(-1)58.04 k J·kg~(-1), indicating that the mixed pyrolysis achieved a certain degree of thermal coupling. The mixed pyrolysis of NS/WS demonstrated a synergistic effect in the preparation of aromatic hydrocarbons. The optimum condition for aromatics preparation with a value of 20.51% was achieved at a temperature of 600℃ and a NS/WS mass ratio of 1:1. By introducing Cu/HZSM-5 catalyst, the relative content of aromatics was further improved(35.74%). This study provided a new approach for high-value utilization of NS and WS.
引文
[1]ZHANG H Y,XIAO R,JIN B S,et al.Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst[J].Bioresource Technology,2013,140(7):256-262.
    [2]孟晓晓,孙锐,袁皓,等.不同热解温度下玉米秸秆中碱金属K和Na的释放及半焦中赋存特性[J].化工学报,2017,68(4):1600-1607.MENG X X,SUN R,YUAN H,et al.Effect of different pyrolysis temperature on alkali metal K and Na emission and existence in semichar[J].CIESC Journal,2017,68(4):1600-1607.
    [3]VISPUTE T P,ZHANG H Y,SANNA A,et al.Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils[J].Science,2010,330:1222-1227.
    [4]HEW K L,TAMIDI A M,YUSUP S,et al.Catalytic cracking of biooil to organic liquid product(OLP)[J].Bioresource Technology,2010,101(22):8855-8858.
    [5]CHAGAS B M E,DORADO C,SERAPIGLIA M J,et al.Catalytic pyrolysis-GC/MS of spirulina:evaluation of a highly proteinaceous biomass source for production of fuels and chemicals[J].Fuel,2016,179:124-134.
    [6]ZHOU Y,WANG Y P,FAN L L,et al.Fast microwave-assisted catalytic co-pyrolysis of straw stalk and soapstock for bio-oil production[J].Journal of Analytical and Applied Pyrolysis,2017,124:35-41.
    [7]董丽.生物质制芳烃技术进展与发展前景[J].化工进展,2013,32(7):1526-1533.DONG L.Development of aromatics production from biomass[J].Chemical Industry and Engineering Progress,2013,32(7):1526-1533.
    [8]闵恩泽,吴巍.可再生生物质资源[J].化工进展,2002,21(5):357-359.MIN E Z,WU W.Renewable biomass resources[J].Chemical Industry and Engineering Progress,2002,21(5):357-359.
    [9]CHEN N Y,DEGNAN T F,KOENIG L R.Liquid fuel from carbohydrates[J].Chemtech,1986,16(8):506-511.
    [10]ZHU X L,LOBBAN L L,MALLINSON R G,et al.Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst[J].Journal of Catalysis,2011,281(1):21-29.
    [11]LI X Y,ZHANG H F,LI J,et al.Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene[J].Applied Catalysis A General,2013,455(2):114-121.
    [12]WARREN C.The burning question[J].Science,2017,355:18-21.
    [13]SINGH A,NIGAM P S,MURPHY J D.Renewable fuels from algae:an answer to debatable land based fuels[J].Bioresource Technology,2011,102(1):10-16.
    [14]ALAM F,DATE A,RASJIDIN R,et al.Biofuel from algae-is it a viable alternative?[J].Procedia Engineering,2012,49(29):221-227.
    [15]SHI F,WANG P,DUAN Y,et al.Recent developments in the production of liquid fuels via catalytic conversion of microalgae:experiments and simulations[J].RSC Advances,2012,2(26):9727-9747.
    [16]PIRT S J.The thermodynamic efficiency(quantum demand)and dynamics of photosynthetic growth[J].New Phytologist,1986,102(1):3-37.
    [17]GHASEMI Y,RASOUL-AMINI S,NASERI A T,et al.Microalgae biofuel potentials[J].Applied Biochemisty Microbiology,2012,48(2):126-144.
    [18]王楷,郭庆杰,杨林.微拟球藻脂肪热解及对全组分制备生物油的影响[J].燃料化学学报,2016,44(1):60-68.WANG K,GUO Q J,YANG L.Pyrolysis of fat from Nannochloropsis sp.and its effect on bio-oil from pyrolysis of all components[J].Journal of Fuel Chemistry and Technology,2016,44(1):60-68.
    [19]HUA M Y,LI B X.Co-pyrolysis characteristics of the sugarcane bagasse and Enteromorpha prolifera[J].Energy Conversion and Management,2016,120:238-246.
    [20]THANGALAZHY-GOPAKUMAR S,ADHIKARI S,CHATTANATHAN S A,et al.Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst[J].Bioresource Technology,2012,118(4):150-157.
    [21]DU Z Y,MA X C,LI Y,et al.Production of aromatic hydrocarbons by catalytic pyrolysis of microalgae with zeolites:catalyst screening in a pyroprobe[J].Bioresource Technology,2013,139(7):397-401.
    [22]WANG S,WANG Q,HU Y M,et al.Study on the synergistic copyrolysis behaviors of mixed rice husk and two types of seaweed by a combined TG-FTIR technique[J].Journal of Analytical and Applied Pyrolysis,2015,114:109-118.
    [23]常国璋,黄艳琴,赖喜锐,等.棕榈壳焦CO2气化过程中反应性及结构特性研究[J].燃料化学学报,2015,43(8):947-954.CHANG G Z,HUANG Y Q,LAI X R,et al.Experimental study on the structure and reactivity of palm kernel shell chars during CO2gasification[J].Journal of Fuel Chemistry and Technology,2015,43(8):947-954.
    [24]LUO S P,BAO G R,WANG H,et al.TG-DSC-FTIR analysis of cyanobacteria pyrolysis[J].Physics Procedia,2012,33:657-662.
    [25]WANG J,WANG G,ZHANG M,et al.A comparative study of thermolysis characteristics of seaweed and fir wood[J].Process Biochemistry,2006,41(8):1883-1886.
    [26]ZHAO H,YAN H X,DONG S S,et al.Thermogravimetry study of the pyrolytic characteristics and kinetics of macro-algae Macrocystis pyrifera residue[J].Journal of Thermal Analysis&Calorimetry,2013,111(3):1685-1690.
    [27]ANCA-COUCE A,SCHARLER R.Modelling heat of reaction in biomass pyrolysis with detailed reaction schemes[J].Fuel,2017,206:572-579.
    [28]SHEN J C,IGATHINATHANE C,YU M L,et al.Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry[J].Bioresource Technology,2015,185:89-98.
    [29]杨文衍,曾燕,罗嘉,等.微拟球藻热解及其催化热解制备生物油研究[J].燃料化学学报,2011,39(9):664-669.YANG W Y,ZENG Y,LUO J,et al.Production of bio-oil by direct and catalytic pyrolysis of Nannochloropsis sp.[J].Journal of Fuel Chemistry and Technology,2011,39(9):664-669.
    [30]ONLY O,BEIS S,KOCKAR O M.Pyrolysis of walnut shell in a well-swept fixed-bed reactor[J].Energy Sources,2004,26(8):771-782.
    [31]LIU S Y,XIE Q L,ZHANG B,et al.Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with Ca O and HZSM-5 as the catalyst[J].Bioresource Technology,2016,204:164-170.
    [32]ZHENG Y W,WANG F,YANG X Q,et al.Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5[J].Journal of Analytical and Applied Pyrolysis,2017,126:169-179.
    [33]VESES A,AZNAR M,MARTINEZ I,et al.Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts[J].Bioresource Technology,2014,162(6):250-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700