唇腭裂相关基因IRF6基因沉默促进细胞增殖和迁移并抑制上皮间质转化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cleft Lip and Palate Associated Gene IRF6 Gene Silencing Promotes Cell Proliferation and Migration and Inhibits EMT
  • 作者:赵远锋 ; 文杰 ; 周天鸿 ; 邹奕
  • 英文作者:ZHAO Yuan-Feng;WEN Jie;ZHOU Tian-Hong;ZOU Yi;Department of Life Science and Technology, Jinan University;
  • 关键词:唇腭裂 ; 干扰素调节因子6 ; RNA干扰 ; 上皮间质转化
  • 英文关键词:cleft lip and palate;;interferon regulatory factor6(IRF6);;RNA interfering;;epithelial-mesenchymal transition(EMT)
  • 中文刊名:SWHZ
  • 英文刊名:Chinese Journal of Biochemistry and Molecular Biology
  • 机构:暨南大学生命科学技术学院生物工程学系;
  • 出版日期:2019-03-20
  • 出版单位:中国生物化学与分子生物学报
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金(No.31301190);; 广州市病毒生物学重点实验室建设项目(No.201705030003)资助~~
  • 语种:中文;
  • 页:SWHZ201903019
  • 页数:8
  • CN:03
  • ISSN:11-3870/Q
  • 分类号:73-80
摘要
干扰素调节因子6(interferon regulatory factor 6,IRF6)基因突变在单纯型和综合征型唇腭裂中均有报导。然而,其基因突变如何导致了唇腭裂的病理发生目前尚不清楚。本文以培养细胞为模型,研究了IRF6基因沉默对细胞增殖、迁移、凋亡以及上皮间质转化(epithelial-mesenchymal transition,EMT)的影响,从而探讨唇腭裂形成的可能的分子病理机制。采用分子克隆技术构建IRF6真核过表达载体;设计合成IRF6基因特异siRNA,成功构建IRF6基因沉默和过表达细胞模型;利用实时荧光定量PCR(qRT-PCR)、免疫印迹法(Western blot)检测转染siRNA-IRF6质粒48 h时,发现IRF6的mRNA和蛋白质表达均降低2倍;CCK8法检测转染siRNA-IRF6后,对细胞增殖能力提高1.98倍;划痕法观察转染siRNA-IRF6质粒72 h后检测细胞的迁移能力,比对照组增强2.36倍;利用Western印迹、qRT-PCR检测EMT标志性分子E-钙黏着蛋白(E-cadherin),发现过表达IRF6后EMT有显著降低。与对照相比,E-钙黏着蛋白表达下调3.57倍;流式细胞技术检测IRF6时未发现对细胞凋亡有影响。在体外培养细胞模型中,IRF6基因沉默显著促进了细胞的增殖和迁移,抑制EMT发生。提示IRF6这一唇腭裂相关基因有可能通过影响上述细胞事件,而导致唇腭裂的病理发生。
        Interferon regulatory factor 6(IRF6) gene mutations have been reported in pure and syndrome cleft lip and palate, but how its gene mutation leads to the disease pathogenesis is still unclear. With cultured cells as the model in this paper, the effects of IRF6 silencing on cell proliferation, migration, apoptosis, and epithelial mesenchymal transformation(EMT) were studied. The possible molecular mechanism of cleft lip and palate formation was explored. The IRF6 eukaryotic overexpression plasmid was constructed by the molecular cloning technology. IRF6 gene specific siRNA was designed and synthesized, and the cell model of IRF6 silencing and overexpression was successfully constructed. Real-time fluorescence quantitative PCR(qRT-PCR) and Western blotting were used to detect the mRNA and protein expression of IRF6 after transfection of siRNA-IRF6 for 48 hours. CCK8 assays showed a 1.98-fold increase in cell proliferation after siRNA-IRF6. The migration ability of cells was observed after transfection for 72 hours with siRNA-IRF6 by the scratch assay, which revealed 2.36 times stronger than that of the control group. Western blotting and qRT-PCR were used to detect the EMT signature molecule E-cadherin. We found that EMT was significantly reduced after IRF6 overexpression, and the expression of E-cadherin was down-regulated by 3.57 fold. No effects of IRF6 on apoptosis was detected by flow cytometry. In the in vitro cultured cell model, IRF6 silencing significantly promoted the proliferation and migration of cells and inhibited the occurrence of EMT. Our results thus revealed the potential mechanism of IRF6 leading to cleft lip and palate through influencing related genes.
引文
[1] Moreno LM, Arcos-Burgos M, Marazita ML, et al. Genetic analysis of candidate loci in non-syndromic cleft lip families from antioquia-colombia and ohio[J]. Am J Med Genet A, 2004, 125A(2): 135-144
    [2] da Silva HPV, Oliveira GHM, Ururahy MAG, et al. Application of high-resolution array platform for genome-wide copy number variation analysis in patients with nonsyndromic cleft lip and palate[J]. J Clin Lab Anal, 2018, doi: 10.1002/jcla.22428[Epub ahead of pront]
    [3] Mossey PA, Modell B. Epidemiology of oral clefts 2012: an international perspective [J]. Front Oral Biol, 2012, 16: 1-18
    [4] Cox TC. Taking it to the max: the genetic and developmental mechanisms coordinating midfacial morphogenesis and dysmorphology[J]. Clin Genet, 2004, 65(3): 163-176
    [5] Sun D, Baur S, Hay ED. Epithelial-mesenchymal transformation is the mechanism for fusion of the craniofacial primordia involved in morphogenesis of the chicken lip[J]. Dev Biol, 2000, 228(2): 337-349
    [6] Cobourne MT. The complex genetics of cleft lip and palate [J]. Eur J Orthod, 2004, 26(1): 7-16
    [7] Moretti F, Marinar B, Lolacono N, et al. A regulatory feedback loop involving p63 and IRF6 links the pathogenesis of 2 genetically different human ectodermal dysplasias[J]. J Clin Invest, 2010, 120(5): 1570-1577
    [8] Som PM, Naidich TP. Illustrated review of the embryology and development of the facial region, part 1: Early face and lateral nasal cavities[J]. AJNR Am J Neuroradiol, 2013, 34(12): 2233-2240
    [ 9] Wyszynski DF, Albacha-Hejazi H, Aldirani M, et al. A genome-wide scan for loci predisposing to non-syndromic cleft lip with or without cleft palate in two large Syrian families[J]. Am J Med Genet A, 2003, 123A(2): 140-147
    [10] Zucchero TM, Cooper ME, Maher BS, et al. Interferon regulatory factor 6 (IRF6) gene variants and the risk of isolated cleft lip or palate[J]. N Engl J Med, 2004, 351(8): 769-780
    [11] Scapoli L, Palmieri A, Martinelli M, et al. Strong evidence of linkage disequilibrium between polymorphisms at the IRF6 locus and nonsyndromic cleft lip with or without cleft palate, in an Italian population[J]. Am J Hum Genet, 2005, 76(1): 180-183
    [12] Blanton SH, Cortez A, Stal S, et al. Variation in IRF6 contributes to nonsyndromic cleft lip and palate[J]. Am J Med Genet A, 2005, 137A(3): 259-262
    [13] Rahimov F, Marazita MA, Visel A, et al. Disruption of an AP-2alpha binding site in an IRF6 enhancer is associated with cleft lip[J]. Nat Genet, 2008, 40(11): 1341-1347
    [14] Lin Y, Xu D, Li X, et al. Upregulation of interferon regulatory factor 6 promotes neuronal apoptosis after traumatic brain injury in adult rats[J]. Cell Mol Neurobiol, 2016, 36(1): 27-36
    [15] Prasad CP, Rath G, Mathur S, et al. Expression analysis of E-cadherin, Slug and GSK3beta in invasive ductal carcinoma of breast[J]. BMC Cancer, 2009, 9: 325
    [16] Iwata J, Suzuki A, Pelikan RC, et al. Smad4-irf6 genetic interaction and TGFbeta-mediated IRF6 signaling cascade are crucial for palatal fusion in mice[J]. Development, 2013, 140(6): 1220-1230
    [17] Ke CY, Xiao WL, Chen CM, et al. IRF6 is the mediator of TGFβ3 during regulation of the epithelial mesenchymal transition and palatal fusion[J]. Sci Rep, 2015, 5: 12791
    [18] Thomason HA, Zhou H, Kouwenhoven EN, et al. Cooperation between the transcription factors p63 and IRF6 is essential to prevent cleft palate in mice[J]. J Clin Invest, 2010, 120 (5): 1561-1569
    [19] Welsh IC, O’Brien TP. Signaling integration in the rugae growth zone directs sequential SHH signaling center formation during the rostral outgrowth of the palate[J]. Dev Biol, 2009, 336 (1): 53-67
    [20] Gartel AL, Tyner AL. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis [J]. Mol Cancer Ther, 2002, 1(8): 639-649

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700