3维海绵状介孔氮化碳的制备及其光催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of three-dimensional cavernous mesoporous carbon nitride and its photocatalytic activity
  • 作者:蒋坤 ; 吴明在
  • 英文作者:JIANG Kun;WU Mingzai;School of Physics and Materials Science,Anhui Key Laboratory of Information Materials and Devices,Anhui University;
  • 关键词:介孔氮化碳 ; 亚甲基蓝 ; 甲基橙 ; 光催化降解
  • 英文关键词:mpg-C_3N_4;;methylene blue;;methyl orange;;photocatalysis degradation
  • 中文刊名:AHDX
  • 英文刊名:Journal of Anhui University(Natural Science Edition)
  • 机构:安徽大学物理与材料科学学院安徽省信息材料与器件重点实验室;
  • 出版日期:2018-09-26 15:46
  • 出版单位:安徽大学学报(自然科学版)
  • 年:2019
  • 期:v.43
  • 基金:国家自然科学基金资助项目(51672001);; 安徽省科技重大专项(16030901039)
  • 语种:中文;
  • 页:AHDX201903012
  • 页数:6
  • CN:03
  • ISSN:34-1063/N
  • 分类号:71-76
摘要
以二氧化硅(SiO_2)球体为模版、三聚氰胺(melamine)为前躯体,通过固相反应方法制备具有可见光催化活性的海绵状介孔石墨相氮化碳(mpg-C_3N_4).采用X射线衍射仪(XRD)、X射线光电子能谱分析仪(XPS)、冷场发射式扫描电镜(SEM)、透射电子显微镜(TEM)、比表面积测试仪(BET)、紫外可见分光光度计(UV-Vis)等对样品进行表征.以亚甲基蓝(MB)和甲基橙(MO)为目标降解物,以直接煅烧前躯体得到的块状氮化碳(bulk-C_3N_4)和多孔氮化碳(mpg-C_3N_4)为光催化剂,研究可见光辐射下两个样品的光催化特性.研究结果表明,多孔氮化碳(mpg-C_3N_4)对MB和MO的降解率优于块状氮化碳(bulk-C_3N_4)的,且优于传统的金属氧化物催化剂TiO_2的.经过120min光照后,mpg-C_3N_4样品对MB和MO的降解效率分别可达99.6%和99.9%,且在10~(-6)~10~(-7) mol·L~(-1)的浓度下依然有很高的降解效率,因此可对微量和痕量的有机污染物进行有效降解.
        Mesoporous graphite carbon nitride(mpg-C_3N_4)with high visible light photocatalytic activity was prepared by the solid-phase reaction method using silica sphere and melamine.The microstructure and properties were characterized by XRD,XPS,SEM,TEM,BET,UV-Vis.Methylene blue(MB)and methyl orange(MO)were used as degradation targets.Bulk C_3N_4 and porous C_3N_4 materials obtained by direct calcination of precursors were used as photocatalysts.It was better than the traditional metal oxide catalyst TiO_2 under the photocatalytic properties.The results showed that the mpg-C_3N_4 degradation rate of MB and MO was much better than that of bulk-C_3N_4,and the degradation efficiency of MB and MO reached 99.6%and 99.9%after 120 min.The degradation efficiency of organic pollutants under trace and trace conditions was still high at a concentration of 10~(-6)-10~(-7) mol·L~(-1).Therefore,it could effectively degrade trace and trace organic pollutants.
引文
[1]POL R,GUERRERO M,GARCIALECINA E,et al.Ni-,Pt-and(Ni/Pt)-doped TiO2nanophotocatalysts:a smart approach for sustainable degradation of Rhodamine B dye[J].Applied Catalysis B:Environmental,2016,181(181):270-278.
    [2]HOFFMANN M R,MARTIN S T,CHOI W,et al.Environmental applications of semiconductor photocatalysis[J].Chemical Reviews,1995,95(1):69-96.
    [3]ZOU Z Q,YE J H,SAYAMA K,et al.Direct splitting of water visible light irradiation with an oxide semiconductor photocatalyst[J].Nature,2001,414(6864):625-627.
    [4]LIU G,ZHAO Y,SUN C,et al.Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2[J].Angewandte Chemie,2008,47(24):4516-4520.
    [5]WANG H,ZHANG L,CHE Z,et al.Semiconductor heterjunction photocatalysts:design,construction,and photocatalytic performances[J].Chemical Society Reviews,2014,43(15):5234-5244.
    [6]MOHINI R,LAKSHMINARASIMHAN N.Coupled semiconductor nanocomposite g-C3N4/TiO2 with enhanced visible light photocatalytic activity[J].Materials Research Bulletin,2016,76:370-375.
    [7]LIU S,XIA J,YU J.Amine-functionalized titanatenanosheet-assembled yolk@shell microspheres for efficient cocatalyst-free visible-light photocatalytic CO2reduction[J].ACS applied materials&interfaces,2015,7(15):8166-8175.
    [8]VINU A,ARIGA K,MORI T,et al.Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride[J].Advanced Materials,2005,17(13):1648-1652.
    [9]LI J,ZHANG X,RAZIQ F,et al.Improved photocatalytic activities of g-C3N4 nanosheets by effectively trapping holes with halogen-induced surface polarization and 2,4-dichlorophenol decomposition mechanism[J].Applied Catalysis B:Environmental,2017,218:60-67.
    [10]TALAPANENI S N,MANE G P,PARK D H,et al.Diaminotetrazine based mesoporous C3N6 with a wellordered 3Dcubic structure and its excellent photocatalytic performance for hydrogen evolution[J].Journal of Materials Chemistry A,2017,5(34):18183-18192.
    [11]LIN B,CHEN S,DONG F,et al.A ball-in-ball g-C3N4@SiO2 nano-photoreactor for highly efficient H2generation and NO removal[J].Nanoscale,2017,9(16):5273-5279.
    [12]ZHUANG Y T,ZHU T T,RUAN M,et al.A 2D porous Fe2O3/graphitic-C3N4/graphene ternary nanocomposite with multifunctions of catalytic hydrogenation,chromium adsorption and detoxification[J].Journal of Materials Chemistry A,2017,5(7):3447-3455.
    [13]WANG X,MAEDA K,CHEN X,et al.Polymer semiconductors for artificial photosynthesis:hydrogen evolution by mesoporous graphitic carbon nitride with visible light[J].Journal of the American Chemical Society,2009,131(5):1680-1681.
    [14]JEON P,LEE M E,BAEK K,et al.Adsorption and photocatalytic activity of biochar with graphitic carbon nitride(g-C3N4)[J].Journal of the Taiwan Institute of Chemical Engineers,2017,77:244-249.
    [15]HUANG H,XIAO K,TIAN N,et al.Template-free precursor-surface-etching route to porous,thin g-C3N4nanosheets for enhancing photocatalytic reduction and oxidation activity[J].Journal of Materials Chemistry A,2017,5(33):17452-17463.
    [16]WANG Y,JIANG Q,SHANG J,et al.Advances in the synthesis of mesoporous carbon nitride materials[J].Acta Physico-Chimica Sinica,2016,3(8):1913-1928.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700