3种吸附剂对污水磷污染去除性能与机制比较
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Removal Performance and Mechanism for Treating Phosphorus in Agricultural Wastewater by Three Adsorbents
  • 作者:吴露 ; 刘锋 ; 龙睿 ; 罗沛 ; 肖润林 ; 陈向 ; 吴金水
  • 英文作者:WU Lu;LIU Feng;LONG Rui;LUO Pei;XIAO Run-lin;CHEN Xiang;WU Jin-shui;Key Laboratory of Agro-ecological Processes in Subtropical Region,Institute of Subtropical Agriculture,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Hunan Environmental Monitoring Center Station;
  • 关键词: ; 膨润土 ; 红壤 ; 炉渣 ; 吸附 ; 废水
  • 英文关键词:phosphate;;bentonite;;red soil;;slag;;adsorption;;wastewater
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室;中国科学院大学;湖南省环境监测中心站;
  • 出版日期:2018-09-12 13:26
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:中国科学院前沿科学重点研究项目(QYZDJ-SSWDQC041);; 国家自然科学基金项目(41701566,41771302)
  • 语种:中文;
  • 页:HJKZ201902020
  • 页数:8
  • CN:02
  • ISSN:11-1895/X
  • 分类号:167-174
摘要
为探索高效利用膨润土、红壤和炉渣去除农业污水磷污染的可行性,对比分析了3种吸附剂对人工合成含磷污水的吸附去除特性,结合SEM、XDS和BET等测试结果以及等温吸附、吸附动力学及Ca2+释放量探讨了3种材料对磷的吸附机制.结果表明,炉渣对磷的吸附能力高于膨润土和红壤,吸附过程均适合Langmuir等温吸附方程(R2> 0. 96),对磷的理论饱和吸附量为:炉渣(16. 87 mg·g~(-1))>红壤(1. 21 mg·g~(-1))>膨润土(0. 92 mg·g~(-1)).炉渣对磷的吸附动力学特征符合Elovich方程(R2=0. 966),而膨润土和红壤对磷的吸附特征则更适合准二级动力学方程(R2为0. 982和0. 959).炉渣的Ca2+释放量(10. 46 mg·g~(-1))显著大于膨润土(0. 31 mg·g~(-1))和红壤(0. 03 mg·g~(-1))(P <0. 05).红壤对磷的吸附量随着p H的升高而降低;膨润土在初始p H为7. 0时,吸附量最低;但初始p H值对炉渣去除磷的影响不大.相比红壤和炉渣,膨润土解吸较快,易于进行重复利用.综上所述,吸附材料的磷吸附能力主要与其结构、化学组成、Ca2+释放能力及溶液初始p H值等有关,炉渣较膨润土和红壤对磷酸盐有着更强的去除能力,适合处理农村污水磷污染.
        To screen the optimal absorbents for P removal from agricultural wastewater,the P adsorption capacity of bentonite,red soil,and slag was studied using synthetic wastewater. Combing the properties of three adsorbents measured by SEM,XDS,and BET methods,the isothermal adsorption,adsorption kinetics,and Ca2 +release capacity were analyzed to elucidate the mechanisms of P adsorption. The results showed that the P adsorption capacity of slag was higher than that of bentonite and red soil,and the Langmuir isotherm model was able to better fit the adsorption data( R2> 0. 96). The P theoretical saturation sorption capacity of slag was higher( 16. 87 mg·g~(-1)) than that of bentonite( 1. 21 mg·g~(-1)) and red soil( 0. 92 mg·g~(-1))( P < 0. 05). The results for adsorption kinetics indicated that slag rapidly removed 95. 6% of P from 10 mg·L-1 solution,and the Elovich equation fit the data well( R2= 0. 812).The adsorption kinetics of P on bentonite and red soil were better described by the pseudo-second-order kinetic equation( R2= 0. 982 and 0. 959,respectively). The Ca2 +release capacity of slag( 10. 46 mg·g~(-1)) was significantly higher compared to bentonite( 0. 31 mg·g~(-1)) and red soil( 0. 03 mg·g~(-1))( P < 0. 05). The P adsorption capacity of red soil was 0. 26 mg·g~(-1) when the p H value was 3,and it decreased as the p H values increased. At the initial p H of 7. 0,the P adsorption capacity of bentonite was about 0. 01 mg·g~(-1),lower than 0. 04 mg·g~(-1) at p H 3,and 0. 05 mg·g~(-1) at p H 11. The initial p H value had little effect on the P adsorption capacity of slag. The P-loaded bentonite,red soil,and slag were effectively regenerated by using Ca Cl2 solution,and bentonite was easier to reuse compared to red soil and slag. The key factors affecting the P adsorption capacity of the three adsorbents were physical and chemical properties,such as crystal structure and the content of metal ions,Ca2 +release capacity,and initial p H. These findings demonstrated that slag was a better choice for P removal compared to bentonite and red soil and could be used as an effective P adsorbent for agricultural wastewater treatment.
引文
[1] Yin H,Yan X,Gu X. Evaluation of thermally-modified calciumrich attapulgite as a low-cost substrate for rapid phosphorus removal in constructed wetlands[J]. Water Research,2017,115:329-338.
    [2] Chen X,Zhou W Q,Pickett S T A,et al. Diatoms are better indicators of urban stream conditions:a case study in Beijing,China[J]. Ecological Indicators,2016,60:265-274.
    [3] Luo P,Liu F,Liu X L,et al. Phosphorus removal from lagoonpretreated swine wastewater by pilot-scale surface flow constructed wetlands planted with Myriophyllum aquaticum[J]. Science of the Total Environment,2017,576:490-497.
    [4] Liu F,Zhang S N,Luo P,et al. Purification and reuse of nonpoint source wastewater via Myriophyllum-based integrative biotechnology:a review[J]. Bioresource Technology,2018,248:3-11.
    [5]范艺,王哲,赵连勤,等.锆改性硅藻土吸附水中磷的研究[J].环境科学,2017,38(4):1490-1496.Fan Y,Wang Z,Zhao L Q,et al. Modification of diatomite by zirconium and its performance in phosphate removal from water[J]. Environmental Science,2017,38(4):1490-1496.
    [6]林建伟,王虹,詹艳慧,等.氢氧化镧-天然沸石复合材料对水中低浓度磷酸盐的吸附作用[J].环境科学,2016,37(1):208-219.Lin J W,Wang H,Zhan Y H,et al. Adsorption of phosphate by lanthanum hydroxide/natural zeolite composites from low concentration phosphate solution[J]. Environmental Science,2016,37(1):208-219.
    [7] Zou H M,Wang Y. Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization[J]. Bioresource Technology,2016,211:87-92.
    [8] Hauduc H, Takács I, Smith S, et al. A dynamic physicochemical model for chemical phosphorus removal[J].Water Research,2015,73:157-170.
    [9] Sen Gupta S,Bhattacharyya K G. Adsorption of metal ions by clays and inorganic solids[J]. RSC Advances,2014,4(54):28537-28586.
    [10]韩承辉,李胜生,何斐,等.天然及处理黏粒红土对水体磷的吸附性能比较[J].生态与农村环境学报,2017,33(1):91-96.Han C H,Li S S,He F,et al. Comparative analysis of natural and treated clay laterites in phosphate adsorption capacity in water[J]. Journal of Ecology and Rural Environment,2017,33(1):91-96.
    [11] Yin H B,Yun Y,Zhang Y L,et al. Phosphate removal from wastewaters by a naturally occurring,calcium-rich sepiolite[J].Journal of Hazardous Materials,2011,198:362-369.
    [12] Moharami S,Jalali M. Use of modified clays for removal of phosphorus from aqueous solutions[J]. Environmental Monitoring and Assessment,2015,187(10):639.
    [13] Barca C,Gérente C,Meyer D,et al. Phosphate removal from synthetic and real wastewater using steel slags produced in Europe[J]. Water Research,2012,46(7):2376-2384.
    [14] Blanco I,Molle P,de Miera L E S,et al. Basic Oxygen Furnace steel slag aggregates for phosphorus treatment. Evaluation of its potential use as a substrate in constructed wetlands[J]. Water Research,2016,89:355-365.
    [15] Tan K H. Soil Sampling,Preparation,and Analysis[M]. New York:Marcel Dekker Inc,1995. 319-321.
    [16] Chen X,Wu L,Liu F,et al. Performance and mechanisms of thermally treated bentonite for enhanced phosphate removal from wastewater[J]. Environmental Science and Pollution Research,2018,25(16):15980-15989.
    [17]王伟,杭小帅,张毅敏,等.红色黏土对磷的吸附性能及其机理初探[J].生态与农村环境学报,2011,27(2):109-112.Wang W,Hang X S,Zhang Y M,et al. Phosphorus adsorption of red clay and its mechanism[J]. Journal of Ecology and Rural Environment,2011,27(2):109-112.
    [18]刘平,秦晶,王超.赤泥强化型河岸带模拟系统对再生水中磷去除效果的研究[J].环境科学,2011,32(4):1015-1019.Liu P,Qin J,Wang C. Performance of phosphorus removal by simulated riparian zone enhanced with red mud treating reclaimed water[J]. Environmental Science,2011,32(4):1015-1019.
    [19] Ashekuzzaman S M,Jiang J Q. Study on the sorption-desorptionregeneration performance of Ca-,Mg-and CaMg-based layered double hydroxides for removing phosphate from water[J].Chemical Engineering Journal,2014,246:97-105.
    [20] Jiang Y X,Wang J,Fang X H,et al. Study of the effect of metal ion on the specific interaction between protein and aptamer by atomic force microscopy[J]. Journal of Nanoscience and Nanotechnology,2004,4(6):611-615.
    [21] Drizo A,Forget C,Chapuis R P,et al. Phosphorus removal by electric arc furnace steel slag and serpentinite[J]. Water Research,2006,40(8):1547-1554.
    [22] Al-Asheh S,Banat F,Abu-Aitah L. Adsorption of phenol using different types of activated bentonites[J]. Separation and Purification Technology,2003,33(1):1-10.
    [23] Barca C,Troesch S,Meyer D,et al. Steel slag filters to upgrade phosphorus removal in constructed wetlands:two years of field experiments[J]. Environmental Science&Technology,2013,47(1):549-556.
    [24]赵洋,唐永智,魏金花.火电厂废弃炉渣除磷的实验研究[J].电站系统工程,2016,32(3):78-82.Zhao Y,Tang Y Z,Wei J H. Experimental study on phosphorus removal in fossil fuel power plants[J]. Power System Engineering,2016,32(3):78-82.
    [25]靖彦,陈效民,刘祖香,等.生物黑炭与无机肥料配施对旱作红壤有效磷含量的影响[J].应用生态学报,2013,24(4):989-994.Jing Y, Chen X M, Liu Z X, et al. Effects of combined application of biochar and inorganic fertilizers on the available phosphorus content of upland red soil[J]. Chinese Journal of Applied Ecology,2013,24(4):989-994.
    [26]干方群,杭小帅,马毅杰,等.天然膨润土的矿物特性及其磷吸附性能研究[J].土壤,2012,44(6):996-1000.Gan F Q,Hang X S,Ma Y J,et al. Mineral characteristics of natural bentonite and its phosphate adsorption properties[J].Soils,2012,44(6):996-1000.
    [27]周庶,邬杰,曹志勇,等.膨润土的改性新技术及其在废水处理中的应用[J].中国非金属矿工业导刊,2015,(6):7-11.Zhou S,Wu J,Cao Z Y,et al. The new modified technology and application of bentonite in wastewater treatment[J]. China NonMetallic Mining Industry Herald,2015,(6):7-11.
    [28] Yin H B,Han M X,Tang W Y. Phosphorus sorption and supply from eutrophic lake sediment amended with thermally-treated calcium-rich attapulgite and a safety evaluation[J]. Chemical Engineering Journal,2016,285:671-678.
    [29] Bulut E,zacar M,爦engil I·A. Equilibrium and kinetic data and process design for adsorption of congo red onto bentonite[J].Journal of Hazardous Materials,2008,154(1-3):613-622.
    [30]常春,王胜利,郭景阳,等.不同热解条件下合成生物炭对铜离子的吸附动力学研究[J].环境科学学报,2016,36(7):2491-2502.Chang C,Wang S L,Guo J Y,et al. Adsorption kinetics and mechanism of copper ion on biochar with different pyrolysis condition[J]. Acta Scientiae Circumstantiae,2016,36(7):2491-2502.
    [31] Yang S J,Zhao Y X,Ding D H,et al. An electrochemically modified novel tablet porous material developed as adsorbent for phosphate removal from aqueous solution[J]. Chemical Engineering Journal,2013,220:367-374.
    [32] Lin J W,Zhan Y H,Wang H,et al. Effect of calcium ion on phosphate adsorption onto hydrous zirconium oxide[J]. Chemical Engineering Journal,2017,309:118-129.
    [33]吴丽萍,徐晓瑛,文科军,等.不同粒径炉渣对磷的静态吸附[J].环境工程学报,2014,8(9):3933-3938.Wu L P,Xu X Y,Wen K J,et al. Static phosphorus adsorption of clinkers with different particle sizes[J]. Chinese Journal of Environmental Engineering,2014,8(9):3933-3938.
    [34] Kamiyango M W,Masamba W R L,Sajidu S M I,et al.Phosphate removal from aqueous solutions using kaolinite obtained from Linthipe,Malawi[J]. Physics and Chemistry of the Earth,Parts A/B/C,2009,34(13-16):850-856.
    [35] Su Y,Cui H,Li Q,et al. Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles[J]. Water Research,2013,47(14):5018-5026.
    [36]赖立,谢强,方文侃,等.水合氧化铝负载的磁性核/壳结构Fe3O4@SiO2纳米颗粒对水中磷的去除及再利用[J].环境科学,2016,37(4):1444-1450.Lai L, Xie Q, Fang W K, et al. Removal and recycle of phosphor from water using magnetic core/shell structured Fe3O4@SiO2nanoparticles functionalized with hydrous aluminum oxide[J]. Environmental Science,2016,37(4):1444-1450.
    [37]付军,范芳,李海宁,等.铁锰复合氧化物/壳聚糖珠:一种环境友好型除磷吸附剂[J].环境科学,2016,37(12):4882-4890.Fu J,Fan F,Li H N,et al. Fe-Mn binary oxide impregnated chitosan bead(FMCB):An environmental friendly sorbent for phosphate removal[J]. Environmental Science,2016,37(12):4882-4890.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700