麦田O_3干沉降过程及不同沉降通道分配的模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulating and partitioning ozone flux in winter wheat field: the Surfatm-O_3 model
  • 作者:徐静馨 ; 郑有飞 ; 麦博儒 ; 赵辉 ; 储仲芳 ; 黄积庆 ; 袁月
  • 英文作者:XU Jing-xin;ZHENG You-fei;MAI Bo-ru;ZHAO Hui;CHU Zhong-fang;HUANG Ji-qing;YUAN Yue;Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,Nanjing University of Information Science & Technology;Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,Nanjing University of Information Science & Technology;Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction,China Meteorological Administration;
  • 关键词:Surfatm-O3模型 ; 麦田 ; O3干沉降 ; 不同沉降通道分配 ; 模拟
  • 英文关键词:Surfatm-O3 model;;winter wheat field;;ozone dry deposition;;different deposition pathways;;simulation
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:中国气象局气溶胶与云降水重点开放实验室;南京信息工程大学江苏省大气环境与装备技术协同创新中心;中国气象局广州热带海洋气象研究所/广东省区域数值天气预报重点实验室;
  • 出版日期:2018-02-20
  • 出版单位:中国环境科学
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金资助项目(41475108,41575110);; 江苏省普通高校研究生科研创新计划资助项目(KYLX_0837)
  • 语种:中文;
  • 页:ZGHJ201802008
  • 页数:16
  • CN:02
  • ISSN:11-2201/X
  • 分类号:57-72
摘要
利用涡度相关系统对南京地区冬小麦田和裸土期O_3干沉降过程进行观测的基础上,引入Surfatm-O_3干沉降模型,对其叶片气孔阻力(R_s~(leaf))、土壤阻力(R_(soil))和表面阻力(R_(cut))的公式进行参数化修订和验证,开展了冬小麦主要生育期的总O_3通量(F_(O3))、干沉降速率(V_d)及其不同沉降通道分配的模拟,并间接分析了土壤排放的NO与O_3的化学反应对O_3干沉降过程的影响.结果表明:冬小麦田FO_3和V_d的实测值与模拟值趋势相似,平均实测和模拟V_d值分别为0.39和0.37cm/s,模拟值比实测值低估5.3%,其中每一个独立阻力公式的模拟效果均较好.平均非气孔沉降(表面沉降和土壤沉降)是O_3干沉降主要的沉降通道,占总O_3通量的68.8%,表面沉降占非气孔沉降的46.7%;平均绿叶和黄叶气孔沉降分别占总O_3通量的28.6%和2.6%.白天非气孔沉降比例减小至占总O_3通量的58.8%,绿叶和黄叶的气孔沉降比例比值增大,分别占总O_3通量的37.7%和3.5%.夜晚表面沉降和土壤沉降分别占总O_3通量的64.3%和35.7%.土壤排放的NO会与O_3产生化学反应,对O_3干沉降过程产生影响,需要在今后的O_3干沉降模型中考虑.
        Terrestrial ecosystems are not only the major sink for ozone, but also a critical control of surface-level ozone budget. However, due to its deleterious effects, plant functioning is affected by the ozone absorbed. It is thus very necessary to predict total ozone deposition to ecosystems and partition the different deposition pathways(stomatal pathway and non-stomatal pathway). Based on observations of the ozone dry deposition of winter wheat and bare-soil field in Nanjing by the eddy-correlation system, the Surfatm-O_3 dry deposition model were added in order to modify and validate parameters of the leaf stomatal resistance(R_s~(leaf)), soil resistance(R_(soil)) and cuticular resistance(R_(cut)). Then the simulations of the total ozone flux(F_(O3)) of main growth stages in Winter Wheat, dry deposition velocity(V_d) and their distributions of different deposition pathways were carried out, and the impacts of chemical reactions between NO from the soil and ozone on the ozone dry deposition process were also analyzed indirectly. The results showed the simulations and measurements of F_(O3) and V_d had the similar trend, and the average values of measured V_d and modelled V_d were 0.39 and 0.37 cm/s, respectively. Compared with measurements, the simulations underestimated by 5.3%. The average non-stomatal deposition pathway(cuticular deposition and soil deposition) is the main pathway of ozone dry deposition, accounting for 68.8% of the total ozone flux, in which cuticular deposition was accounted for 46.7% of non-stomatal deposition. The average green and yellow leaf stomatal deposition accounted for 28.6% and 2.6% of the total ozone flux respectively. During the daytime, the proportion of non-stomatal deposition decreased to 58.8%, and the ratios of green and yellow leaf stomatal deposition increased, accounting for 37.7% and 3.5% of the total ozone flux, respectively. During the nighttime, cuticular deposition and soil deposition accounted for 64.3% and 35.7% of total ozone flux, respectively. The soil NO emission affected the dry ozone deposition process by ozone chemical reaction, which should be considered in the future ozone dry deposition model.
引文
[1]Vingarzan R.A review of surface ozone background levels and trends[J].Atmospheric Environment,2004,38:3431-3442.
    [2]Meehl G A,Stocker T F,Collins W D,et al.Global climate projections,in:Climate Change 2007:The Physical Basis,edited by:Solomon S,Qin D,Manning M,Chen Z,et al.Contribution of Working Group I to Fourth Assessment Report of IPCC on Climate Change[R].Cambridge University Press,Cambridge,UK/NY,USA.2007.
    [3]Forster P,Ramaswamy V,Artaxo,P,B et al.Changes in Atmospheric Constituents and in Radiative Forcing,in:Climate Change 2007:The Physical Basis,edited by:Solomon S,Qin D,Manning M,Chen Z,et al.Contribution of Working Group I to Fourth Assessment Report of IPCC on Climate Change[R]Cambridge University Press,Cambridge,UK/NY,USA.2007.
    [4]Almeida E,Marracos M,Morcillo M,et al.Atmospheric corrosion of mild steel,Part I–Rural and urban atmosphere[J].Materials&Corrosion,2000,51:859-864.
    [5]Boyce A,Nord A G,Tronner K.Atmospheric bronze and copper corrosion as an environmental indicator[J].Water,Air&Soil Pollution,2001,127:193-205.
    [6]Targer I B,Balmes J,Lurmann F,et al.Chronic exposure to ambient ozone and lung function in young adults[J].Epidemiology,2005,16:751-759.
    [7]廖志恒,范绍佳.2006~2012年珠江三角洲地区O3污染对人群健康的影响[J].中国环境科学,2015,35(3):897-905.
    [8]Ainsworth E A.Rice production in a changing climate:a met analysis of responses to elevated carbon dioxide an elevated ozone concentration[J].Global Change Biology,2008,14:1642-1650.
    [9]Wittig V E,Ainsworth E A,Naidu S L,et al.Quantifying the impact of current and future tropospheric ozone on tree biomass,growth,physiology and biochemistry:a quantitative metaanalysis.Global Change Biology,2009,15:396-424.
    [10]金明红,冯宗炜.臭氧对冬小麦叶片膜保护系统的影响[J].生态学报,2000,20:444-447.
    [11]郑启伟,王效科,冯兆忠,等.用旋转布气法开顶式气室研究臭氧对水稻生物量和产量的影响[J].环境科学,2007,28:170-175.
    [12]白月明,王春乙,郭建平,等.大气臭氧变化对油菜影响的模拟试验[J].中国环境科学,2007,23(4):407-411.
    [13]王兰兰,何兴元,陈玮,等.大气中O3、CO2浓度升高对蒙古栎叶片生长的影响[J].中国环境科学,2011,31(2):340-345.
    [14]郑有飞,赵泽,吴荣军,等.臭氧胁迫对冬小麦叶绿素荧光及气体交换的影响[J].环境科学,2010,31:472-479.
    [15]姚芳芳,王效科,陈展,等.农田冬小麦生长和产量对臭氧动态暴露的响应[J].植物生态学报,2008,32:212-219.
    [16]Mills G,Hayes F,Simpson D,et al.Evidence of widespread effects of ozone on crops and(semi-)natural vegetation in Europe(1990-2006)in relation to AOT40-and flux-based risk maps[J].Global Change Biology,2011,17:592-613.
    [17]Payne R J,Stevens C J,Dise N B,et al.Impacts of atmospheric pollution on the plant communities of British acid grasslands[J].Environmental Pollution,2011,159:2602-2608.
    [18]Vandermeiren K,De Bock M,Horemans N,et al.Ozone effects on yield quality of spring oilseed rape and broccoli[J].Atmospheric Environment,2012,47:76-83.
    [19]Feng Z Z,Sun J S,Wan W X,et al.Evidence of widespread ozone-induced visible injury on plants in Beijing,China[J].Environmental pollution,2014,193:296-301.
    [20]Ashmore M,Toet S,Emberson L.Ozone-a significant threat to future world food production[J].New Phytologist,2006,170:201-204.
    [21]Avnery S,Mauzerall D L,Liu J F,et al.Global crop yield reductions due to surface ozone exposure:1.Year 2000 crop production losses and economic damage[J].Atmospheric Environment,2011,45:2284-2296.
    [22]Avnery S,Mauzerall D L,Liu J F,et al.Global crop yield reductions due to surface ozone exposure:2.Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution[J].Atmospheric Environment,2011,45:2297-2309.
    [23]Felzer B S,Cronin T,Reilly J M,et al.Impacts of ozone on trees and crops[J].Comptes Rendus-Géoscience,2007,339:784-798.
    [24]Sitch S,Cox P M,Collins W J,et al.Indirect radiative forcing of climate change through ozone effects on the land-carbon sink[J].Nature,2007,448:791-795.
    [25]Fowler D,Pilegaard K,Sutton M A,et al.Atmospheric composition change:Ecosystems-Atmosphere interactions[J].Atmospheric Environment,2009,43:5193-5267.
    [26]Nikolov N,Zeller K F.Modeling coupled interactions of carbon,water,and ozone exchange between terrestrial ecosystems and the atmosphere.I:Model description[J].Environmental Pollution,2003,124:231-246.
    [27]Zhang L,Brook J R,Vet R.A revised parameterization for gaseous dry deposition in air-quality models[J].Atmospheric Chemistry and Physics,2003,3:2067-2082.
    [28]Bassin S,Calanca P,Weidinger T,et al.Modeling seasonal ozone fluxes to grassland and wheat:Model improvement,testing,and application[J].Atmospheric Environment,2004,38:2349-2359.
    [29]Stella P,Personne E,Loubet B,et al.Predicting and partitioning ozone fluxes to maize crops from sowing to harvest:the Surfatm-O3model[J].Biogeosciences,2011,8:2869-2886.
    [30]Rannikü,Altimir N,Mammarella I,et al.Ozone deposition into a boreal forest over a decade of observations:evaluating deposition partitioning and driving variables[J].Atmospheric Chemistry and Physics,2012,12:12715-12758.
    [31]Wesely M L.Parameterization of surface resistance to gaseous dry deposition in regional-scale numerical models[J].Atmospheric Environment,1989,23:1293-1304.
    [32]Wesely M L,Hicks B B.A review of the current status of knowledge on dry deposition[J].Atmospheric Environment,2000,34:2261-2282.
    [33]Zhang L M,Brook J R,Vet R.On ozone dry deposition-with emphasis on non-stomatal uptake and wet canopies[J].Atmospheric Environment,2002,36:4787-4799.
    [34]Tuzet A,Perrier A,Loubet B,et al.Modelling ozone deposition fluxes:The relative roles of deposition and detoxification processes[J].Agricultural and Forest Meteorology,2011,151:480-492.
    [35]Fares S,Matteucci G,Scarascia Mugnozza G,et al.Testing of models of stomatal ozone fluxes with field measurements in a mixed Mediterranean forest[J].Atmospheric Environment,2013,67:242-251.
    [36]段文军,王成,张昶,等.深圳夏季3种生境城市森林内臭氧浓度变化规律[J].中国环境科学,2017,37(6):2064-2071.
    [37]李硕,郑有飞,吴荣军,等.冬麦田臭氧干沉降过程的观测[J].应用生态学报,2016,27:1811-1819.
    [38]潘小乐,王自发,王喜全,等.秋季在北京城郊草地下垫面上的一次O3干沉降观测试验[J].大气科学,2010,34:120-130.
    [39]朱治林,孙晓敏,董云社,等.鲁西北平原玉米地涡度相关O3通量日变化特征[J].中国科学:地球科学,2014,44:292-301.
    [40]国家气象局.农业气象观测规范(上卷)[S].气象出版社.北京:1993.
    [41]Personne E,Loubet B,Herrmann B,et al.SURFATMNH3:a model combining the surface energy balance and bidirectional exchanges of ammonia applied at the field scale[J].Biogeosciences,2009,6:1371-1388.
    [42]Emberson L D,Simpson D,Tuovinen J P,et al.Towards a model of ozone deposition and stomatal uptake over Europe[D].EMEP/MSC-W Note 6/2000,Norwegian Meteorological Institute,Oslo,available at:www.emep.int/reports/dnmi note 6 2000.pdf.2000.
    [43]Tuovinen J P,Ashmore M R,Emberson L D,et al.Testing and improving the EMEP ozone deposition module[J].Atmospheric Environment,2004,38:2373-2385.
    [44]Jones H G.Plants and Microclimate:A quantitative approach to environmental plant physiology[D].2nd Edn.,Cambridge University Press,Cambridge,UK.1992.
    [45]Baldocchi D D,Meyers T P.Trace gas exchange above the floor of a deciduous forest.1.Evaporation and CO2 efflux[J].Journal of Geophysical Research,1991,96:7271-7285.
    [46]van Pul W A J,Jacobs A F G.The conductance of a maize crop and the underlying soil to ozone under various environmental conditions[J].Boundary-Layer Meteorology,1994,69:83-99.
    [47]Mészáros R,Zsély I G,Szinyei D,et al.Sensitivity analysis of an ozone deposition model[J].Atmospheric Environment,2009,43:663-672.
    [48]Stella P,Loubet B,Lamaud E,et al.Ozone deposition onto bare soil:A new parameterisation[J].Agricultural and Forest Meteorology,2011,151:669-681.
    [49]Massman W J.Toward an ozone standard to protect vegetation based on effective dose:a review of deposition resistances and possible metric[J].Atmospheric Environment,2004,38:2323-2337.
    [50]Fares S,Mc Kay M,Holzinger R,Goldstein A H.Ozone fluxes in a Pinus ponderosa ecosystem are dominated by non-stomatal processes:evidence from long-term continuous measurements[J].Agricultural and Forest Meteorology,2010,150:420-431.
    [51]Gerosa G,Vitale M,Finco A,et al.Ozone uptake by an evergreen Mediterranean Forest(Quercusilex)in Italy.Part I:Micrometeorological flux measurements and flux partitioning[J].Atmospheric Environment,2005,39:3255-3266.
    [52]Gerosa G,Finco A,Mereu S,et al.Comparison of seasonal variations of ozone exposure and fluxes in a Mediterranean Holm oak forest between the exceptionally dry 2003 and the following year[J].Environment Pollution,2009,157:1737-1744.
    [53]Altimir N,Kolari P,Tuovinen J P,et al.Foliage surface ozone deposition:a role for surface moisture[J].Biogeosciences,2006,2:209-228.
    [54]Fares S,Robin W,Park J H,et al.Ozone deposition to an orange orchard:Partitioning between stomatal and non-stomatal sinks[J].Environmental Pollution,2012,169:258-266.
    [55]Vitale M,Gerosa G,Ballarin-Denti A,et al.Ozone uptake by an evergreen Mediterranean forest(Quercus ilex L.)in Italy-Part II:flux modelling.Upscaling leaf to canopy ozone uptake by a process-based model[J].Atmospheric Environment,2005,39:3267-3278.
    [56]Hogg A,Uddling J,Ellsworth D,et al.Stomatal and nonstomatal fluxes of ozone to a northern mixed hardwood forest[J].Tellus Series B-Chemical and Physical Meteorology,2007,59:514-525.
    [57]Morani A,Nowak D,Hirabayashi S,et al.Comparing i-Tree modeled ozone deposition with field measurements in a periurban Mediterranean forest[J].Environmental Pollution,2014,195:202-209.
    [58]Nemitz E,Sutton M A,Wyers G P,et al.Surface/atmosphere exchange and chemical interaction of gases and aerosols over oilseed rape[J].Agricultural and Forest Meteorology,2000,105:427-445.
    [59]Kurpius M R,Goldstein A H.Gas-phase chemistry dominates O3loss to a forest,implying a source of aerosols and hydroxyl radicals to the atmosphere[J].Geophysical Research Letters,2003,30:doi:10.1029/2002GLO16785.
    [60]Steinkamp J,Lawrence M G.Improvement and evaluation of simulated global biogenic soil NO emissions in an AC-GCM[J].Atmospheric Chemistry and Physics,2011,11:6063-6082.
    [61]Demore W B,Molina M J,Watson R T,et al.Chemical kinetics and photochemical data for use in stratospheric modelling[J].Evaluation,1983,6:62-83.
    [62]Walton S,Gallagher M W,Duyzer J.Use of a detailed model to study the exchange of NOx and O3 above and below a deciduous canopy[J].Atmospheric Environment,1997,31:2915-293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700