X射线干涉光刻方法制备表面增强拉曼散射基底
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fabrication of surface enhanced Raman scattering substrate by X-ray interference lithography
  • 作者:刘星 ; 陶旭磊 ; 王春鹏 ; 周晓娟 ; 杨树敏 ; 吴衍青 ; 邰仁忠
  • 英文作者:LIU Xing;TAO Xulei;WANG Chunpeng;ZHOU Xiaojuan;YANG Shumin;WU Yanqing;TAI Renzhong;Shanghai Institute of Applied Physics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Institute of High Energy Physics,Chinese Academy of Sciences;
  • 关键词:X射线干涉光刻 ; 金属纳米阵列 ; 表面增强拉曼散射
  • 英文关键词:X-ray interference lithography;;Metallic nano array;;Surface enhanced Raman scattering
  • 中文刊名:HJSU
  • 英文刊名:Nuclear Techniques
  • 机构:中国科学院上海应用物理研究所;中国科学院大学;中国科学院高能物理研究所;
  • 出版日期:2017-05-10
  • 出版单位:核技术
  • 年:2017
  • 期:v.40
  • 基金:国家杰出青年科学基金(No.11225527);; 国家自然科学基金(No.11205232、No.11575283)资助~~
  • 语种:中文;
  • 页:HJSU201705001
  • 页数:5
  • CN:05
  • ISSN:31-1342/TL
  • 分类号:5-9
摘要
表面增强拉曼散射(Surface-enhanced Raman Scatting,SERS)是一种非常重要的化合物分析技术,在光谱分析、生物传感等领域有着广泛的应用。理想的SERS基底需要同时具有高灵敏度和高均一性,这就需要制备一种大面积并且周期小于100 nm的金属纳米阵列。同步辐射X射线干涉光刻技术具有很高的光刻分辨能力和均匀性,可以制备高密度的金属纳米阵列。利用X射线干涉光刻方法制备了区域面积为320μm×440μm和周期为100 nm的二维周期结构,同时保持了高复制性和优异的均匀性。金属纳米阵列作为表面增强拉曼散射基底时可以提供很好的灵敏度和重复性。对于R6G染料,最低探测极限可达10-9 mol·L-1。在单片样品内的均匀性良好,相对标准偏差为6.72%。此外,表面拉曼增强基底能重复利用,可进一步降低成本。
        Background: Surface enhanced Raman scattering(SERS) has become an important molecular detection technology in the field of spectral analysis and biosensing during the last several decades. SERS substrates are usually fabricated by electron beam lithography(EBL), focus ion beam lithography(FIB), nanoimprint lithography(NIL), scanning probe lithography(SPL) and laser interference lithography(LIL). However, it is still a challenge to fabricate arrays with large area, small period and high output. Purpose: This study aims to rapidly fabricate a SERS substrate with large area and sub 100-nm pitch. Methods: The SERS substrates were prepared by using X-ray interference lithography(XIL), then scanning electron microscope(SEM), atomic force microscope(AFM) and Raman spectrum were employed to examine their characteristics. Results: The detective limitation of SERS substrate can be as low to 10~(-9) mol·L~(-1). The relative standard deviations are achieved to be less than 10%. Conclusion: The SERS substrate with the advantages of sensitivity and reproductive provides a promising approach for future SERS applications.
引文
1 Li J F,Huang Y F,Ding Y,et al.Shell-isolated nanoparticle-enhanced Raman spectroscopy[J].Nature,2010,464:392?395.DOI:10.1038/nature08907.
    2 Wu H Y,Choi C J,Cunningham B T.Plasmonic nanogap enhanced Raman scattering using a resonant nanodome array[J].Small,2012,8:2878?2885.DOI:10.1002/smll.201200712.
    3 Baik J M,Lee S J,Moskovits M.Polarized surface-enhanced Raman spectroscopy from molecules adsorbed in nano-gaps produced by electro migration in silver nanowires[J].Nano Letters,2009,9:672?676.DOI:10.1021/nl803145d.
    4 Wang T,Zhang Z,Liao F,et al.The effect of dielectric constants on noble metal/semiconductor SERSenhancement:FDTD simulation and experiment validation of Ag/Ge and Ag/Si substrates[J].Scientific Reports,2014,4:4052.DOI:10.1038/srep04052.
    5 Wei H,Xu H.Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy[J].Nanoscale,2013,5:10794?10805.DOI:10.1039/C3NR02924G.
    6 Wang D,Zhu W,Best M D,et al.Wafer-scale meta surface for total power absorption,local field enhancement and single molecule Raman spectroscopy[J].Scientific Reports,2013,3:2867.DOI:10.1038/srep02867.
    7 Ahn H J,Thiyagarajan P,Jia L,et al.An optimal substrate design for SERS:dual-scale diamond-shaped gold nano-structures fabricated via interference lithography[J].Nanoscale,2013,5:1836?1842.DOI:10.1039/C3NR33498H.
    8 Dorpe P.300 mm wafer-level,ultra-dense arrays of Au-capped nanopillars with sub-10 nm gaps as reliable SERS substrates[J].Nanoscale,2014,6:12391?12396.DOI:10.1039/C4NR04315D.
    9 Li W,Wang G,Zhang X,et al.Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection[J].Nanoscale,2015,7:15487?15494.DOI:10.1039/C5NR03140K.
    10 Abu Hatab N A,Oran J M,Sepaniak M J.Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing[J].ACS Nano,2008,2:377?385.DOI:10.1021/nn7003487.
    11 Acimovic S S,Kreuzer M P,Gonzalez M U,et al.Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing[J].ACS Nano,2009,3:1231?1237.DOI:10.1021/nn900102j.
    12 Jain P K,Huang W,El-Sayed M A.On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs:a plasmon ruler equation[J].Nano Letters,2007,7:2080?2088.DOI:10.1021/nl071008a.
    13 Kim D S,Ji R,Fan H J,et al.Laser-interference lithography tailored for highly symmetrically arranged Zn O nanowire arrays[J].Small,2007,3:76?80.DOI:10.1002/smll.200600307.
    14 Zhang P,Yang S,Wang L,et al.Large-scale uniform Au nanodisk arrays fabricated via X-ray interference lithography for reproducible and sensitive SERSsubstrate[J].Nanotechnology,2014,25:245301.DOI:10.1088/0957-4484/25/24/245301.
    15郭春磊,孟祥雨,吴衍青,等.上海光源软X射线干涉光刻线站波荡器光源及束线相干性研究[J].核技术,2013,36(9):090101.DOI:10.11889/j.0253-3219.2013.hjs.36.090101.GUO Chunlei,MENG Xiangyu,WU Yanqing,et al.Investigation on the coherence of undulator source and soft X-ray interference lithography beamline in SSRF[J].Nuclear Techniques,2013,36(9):090101.DOI:10.11889/j.0253-3219.2013.hjs.36.090101.
    16 Yang S M,Wang L S,Zhao J,et al.Developments at SSRF in soft X-ray interference lithography[J].Nuclear Science and Techniques,2015,26(1):010101.DOI:10.13538/j.1001-8042/nst.26.010101.
    17 Nie S,Emory S R.Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J].Science,1997,275:1102?1106.DOI:10.1126/science.275.5303.1102.
    18 Lin W C,Huang S H,Chen C L,et al.Controlling SERSintensity by tuning the size and height of a silver nanoparticle array[J].Applied Physics A,2010,101:185?189.DOI:10.1007/s00339-010-5777-y.
    19 Fu Q,Zhan Z,Dou J,et al.Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5-nm fabricated by UTAM technique[J].ACS Applied Materials&Interfaces,2015,7(24):13322?13328.DOI:10.1021/acsami.5b01524.
    20 Bao Z Y,Lei D Y,Jiang R,et al.Bifunctional Au@Pt core-shell nanostructures for in situ monitoring of catalytic reactions by surface-enhanced Raman scattering spectroscopy[J].Nanoscale,2014,6:9063?9070.DOI:10.1039/C4NR00770K.
    21 Liu H,Zhang X,Zhai T,et al.Centimeter scale homogeneous SERS substrates with seven-order global enhancement through thermally controlled plasmonic nanostructures[J].Nanoscale,2014,6:5099?5105.DOI:10.1039/C4NR00161C.
    22 Liu X,Yu L,Yang S,et al.High sensitivity and homogeneity of surface enhanced Raman scattering on three-dimensional array-film hybrid platform[J].Applied Physics Letters,2017,110:081605.DOI:10.1063/1.4977424.
    23 Huang J A,Zhao Y Q,Zhang X J,et al.Ordered Ag/Si nanowires array:wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection[J].Nano Letters,2013,13:5039?5045.DOI:10.1021/nl401920u.
    24 Qiu B,Xing M,Yi Q,et al.Chiral carbonaceous nanotubes modified with titania nanocrystals:plasmon-free and recyclable SERS sensitivity[J].Angewandte Chemie,2015,127:10789?10793.DOI:10.1002/ange.201505319.
    25 Li X,Chen G,Yang L,et al.Multifunctional Au-coated Ti O2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection[J].Advanced Functional Materials,2010,20:2815?2824.DOI:10.1002/adfm.201000792.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700