宽光谱广角蛾眼抗反射超表面结构设计分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and Analysis of Moth-Eye Antireflective Metasurface Structure with Broadband and Wide-Angle
  • 作者:林鹤 ; 付跃刚 ; 欧阳名钊 ; 赵宇 ; 朱启凡 ; 吴锦双
  • 英文作者:Lin He;Fu Yuegang;Ouyang Mingzhao;Zhao Yu;Zhu Qifan;Wu Jinshuang;Key Laboratory of Opto-Electronic Measurement and Optical Information Transmission Technology,Changchun University of Science and Technology;Key Laboratory of Advanced Optical System Design and Manufacturing Technology of the Universities of Jilin Province,Changchun University of Science and Technology;
  • 关键词:光学设计 ; 亚波长结构 ; 蛾眼超表面结构 ; 时域有限差分法 ; 光学窗口
  • 英文关键词:optical design;;sub-wavelength structure;;moth-eye metasurface structure;;finite difference time domain method;;optical window
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:长春理工大学光电测控与光信息传输技术教育部重点实验室;长春理工大学先进光学设计与制造技术吉林省高校重点实验室;
  • 出版日期:2018-10-07 13:46
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.505
  • 基金:国家自然科学基金(51505078);; 吉林省自然科学基金项目(20150101038JC)
  • 语种:中文;
  • 页:JJZZ201901043
  • 页数:7
  • CN:01
  • ISSN:31-1339/TN
  • 分类号:339-345
摘要
本研究采用严格耦合波分析法设计具有宽带广角抗反射特性的ZnS MS材料的蛾眼亚波长周期微纳结构。基于严格耦合波理论,控制周期尺寸小于入射波长与材料折射率的比值,实现高级次衍射波为倏逝波,以提高蛾眼结构宽带抗反射效率。采用时域有限差分法分析蛾眼结构周期、底端直径、结构高度和顶端直径对光谱透过率的影响,并对4种结构参数进行优化。此外,还选取可见光、近红外和中红外三个特征波长进行宽角度入射的电场分析。研究结果表明:在短波范围内,蛾眼宽角度抗反射性能取决于结构表面的减反射和前向散射的能力;而在长波范围内,蛾眼结构被视为ZnS MS平面膜层,其光谱特性主要受Fabry-Perot干涉影响。该研究为不同波段宽角度蛾眼结构设计提供了理论依据和设计方法。
        A bionic moth-eye sub-wavelength periodic micro-nanostructure of ZnS MS material,with broadband and wide-angle antireflection properties is designed by the rigorous coupled-wave analysis method.According to the rigorous coupled wave theory,a suitable control of periodic size,smaller than the ratio between the incident wavelength and the refractive index of materials,makes the high-order diffracted wave as an evanescent wave,and thus the broadband antireflection efficiency of this moth-eye structure is enhanced.The finite difference time domain algorithm is used to investigate the effects of moth-eye structural period,bottom diameter,structural height and top diameter on spectral transmissivity. Moreover,four structural parameters are optimized.In addition,three characteristic wavelengths in the visible,near-infrared and middle-infrared regime are selected for the electric field analysis under a wide-angle incidence.The research results show that in the short-wavelength range,the moth-eye wide-angle anti-reflection performance is determined by the anti-reflection and forward-scattering ability of this structural surface,while in the long-wavelength range,the moth-eye structure is regarded as a ZnS MS plane film,and its spectral properties are mainly affected by the Fabry-Perot interference.This study provides a theoretical basis and a design method for the design of moth-eye wide-angle structures under different wavelengths.
引文
[1]Siddique R H,Diewald S,Leuthold J,et al.Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies[J].Optics Express,2013,21(12):14351-14361.
    [2]Siddique R H,Gomard G,H9lscher H.The role of random nanostructures for the omnidirectional antireflection properties of the glasswing butterfly[J].Nature Communications,2015,6:6909.
    [3]Stavenga D G,Leertouwer H L,Meglic A,et al.Classical lepidopteran wing scale colouration in the giant butterfly-moth Paysandisia archon[J].PeerJ,2018,6:e4590.
    [4]Mendoza-Galván A,Mu1oz-Pineda E,Ribeiro S J L,et al.Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films[J].Journal of Optics,2018,20(2):024001.
    [5]Whitney H M,Reed A,Rands S A,et al.Flower iridescence increases object detection in the insect visual system without compromising object identity[J].Current Biology,2016,26(6):802-808.
    [6]Siddique R H,Donie Y J,Gomard G,et al.Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers[J].Science Advances,2017,3(10):e1700232.
    [7]Palanchoke U,Jovanov V,Kurz H,et al.Influence of back contact roughness on light trapping and plasmonic losses of randomly textured amorphous silicon thin film solar cells[J].Applied Physics Letters,2013,102(8):083501.
    [8]Schade M,Fuhrmann B,Bohley C,et al.Regular arrays of Al nanoparticles for plasmonic applications[J].Journal of Applied Physics,2014,115(8):084309.
    [9]Bai Y F,Fan J,Zou Y G,et al.Fabrication of gratings used in 976nm distributed feedback lasers based on laser interference lithography[J].Laser&Optoelectronics Progress,2017,54(12):120501.白云峰,范杰,邹永刚,等.激光干涉光刻制备976nm分布反馈式激光器光栅[J].激光与光电子学进展,2017,54(12):120501.
    [10]Yin M Q,Sun H W,Wang H B.Research progress in UV nanoimprint lithography technology[J].Micronanoelectronic Technology,2017,54(5):347-354.殷敏琪,孙洪文,王海滨.紫外纳米压印技术的研究进展[J].微纳电子技术,2017,54(5):347-354.
    [11]Tian K,Zou Y G,Hai Y N,et al.Design of subwavelength anti-reflective grating[J].Chinese Journal of Lasers,2016,43(9):0901004.田锟,邹永刚,海一娜,等.亚波长抗反射光栅的设计[J].中国激光,2016,43(9):0901004.
    [12]Liu L,Deng Q Z,Zhou Z P.Subwavelength-gratingassisted broadband polarization-independent directional coupler[J].Optics Letters,2016,41(7):1648-1651.
    [13]Li H Q,Cui B B,Liu Y,et al.Investigation of the chip to photodetector coupler with subwavelength grating on SOI[J].Optics&Laser Technology,2016,76:79-84.
    [14]Liu S R,Wang L,Sun Y J,et al.Enhancement of light extraction efficiency of LED by bionic moth-eye structure with frustum of a cone[J].Acta Optica Sinica,2018,38(1):0122001.刘顺瑞,王丽,孙艳军,等.利用截头圆锥形仿生蛾眼结构提高LED光提取效率[J].光学学报,2018,38(1):0122001.
    [15]Leem J W,Yu J S,Heo J,et al.Nanostructured encapsulation coverglasses with wide-angle broadband antireflection and self-cleaning properties for III-Vmulti-junction solar cell applications[J].Solar Energy Materials and Solar Cells,2014,120:555-560.
    [16]Li Y F,Zhang J H,Zhu S J,et al.Biomimetic surfaces for high-performance optics[J].Advanced Materials,2009,21(46):4731-4734.
    [17]Tan G J,Lee J H,Lan Y H,et al.Broadband antireflection film with moth-eye-like structure for flexible display applications[J].Optica,2017,4(7):678-683.
    [18]Fan P X,Long J Y,Jiang D F,et al.Study on ultrafast laser fabrication of UV-FIR ultra-broad-band antireflection surface micro-nano structures and their properties[J].Chinese Journal of Lasers,2015,42(8):0806005.范培迅,龙江游,江大发,等.紫外-远红外超宽谱带高抗反射表面微纳米结构的超快激光制备及功能研究[J].中国激光,2015,42(8):0806005.
    [19]Dong T T,Fu Y G,Chen C,et al.Study on bionic moth-eye antireflective cylindrical microstructure on germanium substrate[J].Acta Optica Sinica,2016,36(5):0522004.董亭亭,付跃刚,陈驰,等.锗衬底表面圆柱形仿生蛾眼抗反射微结构的研制[J].光学学报,2016,36(5):0522004.
    [20]Guan Q,Liao L W.Research of VIS/NIR/MIRmultispectral anti-reflective hard window coatings on the sapphire substrate[J].Optics&Optoelectronic Technology,2017,15(6):66-72.官庆,廖林炜.蓝宝石基底可见光/激光/中红外多光谱窗口薄膜研究[J].光学与光电技术,2017,15(6):66-72.
    [21]Kong X D,Fu Y G,Xia L P,et al.Analysis of Ag nanoparticle resist in fabrication of transmissionenhanced subwavelength structures[J].Journal of Nanophotonics,2016,10(4):046017.
    [22]Kong X D,Fu Y G,Zhang W G,et al.Analysis of random antireflective structures fabricated by silver dewetting to enhance transmission[J].Journal of Nanophotonics,2017,11(3):036019.
    [23]Dong T T,Fu Y G,Zhang L,et al.The analysis of the effect on the moth-eye antireflection microstructure shape error[C]∥2015International Conference on Manipulation,Manufacturing and Measurement on the Nanoscale(3M-NANO),October 5-9,2015,Changchun,China.New York:IEEE,2015:251-254.
    [24]Bett A J,Eisenlohr J,H9hn O,et al.Wave optical simulation of the light trapping properties of black silicon surface textures[J].Optics Express,2016,24(6):A434-A445.
    [25]Ding H,Lalouat L,Gonzalez-Acevedo B,et al.Design rules for net absorption enhancement in pseudo-disordered photonic crystal for thin film solar cells[J].Optics Express,2016,24(6):A650-A666.
    [26]Zhang Y T,Xuan Y M.Preparation of structured surfaces for full-spectrum photon management in photovoltaic-thermoelectric systems[J].Solar Energy Materials and Solar Cells,2017,169:47-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700