变速与变桨协调的风电机组平滑功率控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Power Smoothing Control of Wind Turbine Generator via Coordinated Rotor Speed and Pitch Angle Regulation
  • 作者:汤雪松 ; 殷明慧 ; 李冬运 ; 刘建坤 ; 周连俊 ; 邹云
  • 英文作者:TANG Xuesong;YIN Minghui;LI Dongyun;LIU Jiankun;ZHOU Lianjun;ZOU Yun;School of Automation,Nanjing University of Science and Technology;Electric Power Research Institute of State Grid Jiangsu Electric Power Co.Ltd.;Xinjiang Goldwind Science & Technology Co.Ltd.;
  • 关键词:风力发电 ; 平滑功率控制 ; 桨距角 ; 动能缓冲 ; 变速控制 ; 变桨调节
  • 英文关键词:wind power generation;;power smoothing control;;pitch angle;;kinetic energy buffer;;rotor speed control;;pitch angle regulation
  • 中文刊名:DLXT
  • 英文刊名:Automation of Electric Power Systems
  • 机构:南京理工大学自动化学院;国网江苏省电力有限公司电力科学研究院;新疆金风科技股份有限公司;
  • 出版日期:2018-10-29 07:08
  • 出版单位:电力系统自动化
  • 年:2019
  • 期:v.43;No.648
  • 基金:国家自然科学基金资助项目(61673213);; 江苏省电力有限公司科技项目(J2017046);; 江苏风力发电工程技术中心开放基金资助项目(ZK18-03-02)~~
  • 语种:中文;
  • 页:DLXT201902015
  • 页数:12
  • CN:02
  • ISSN:32-1180/TP
  • 分类号:157-168
摘要
考虑到风电功率秒级波动对电网频率稳定的影响,需要对风电机组输出功率进行平滑控制。现有依靠风电机组实现风电功率平滑控制的方法大都存在频繁变桨的问题。为此提出了协调变速与变桨的平滑功率控制方法。该方法通过分离桨距角的上调和下调动作,将传统的基于变桨调节的恒转速(转速上限)控制转变为转速区间控制,使风轮机能够在任意桨距角下变速运行,从而更大程度地利用风轮机动能来平滑风电功率波动。因此,该方法在保证平滑控制效果的同时,能有效降低变桨动作频率和幅度,并减小变桨伺服机构的疲劳和叶片载荷。最后,基于风电机组模拟器的实验验证了所提方法的有效性。
        Considering the fluctuation of wind power in seconds exerts an influence on the frequency stability of power grids,it is required to smooth the output power of wind turbine generators.Currently,the wind turbine-depended methods for smoothing wind power usually lead to frequent pitch adjustment,therefore,apower smoothing control method coordinating the rotor speed and pitch angle regulation is proposed.By separating the upward and downward regulation of pitch angle,the conventional constant-speed(upper speed limit)control is redesigned as the rotor speed range control so that the variable-speed operation at any pitch position is available and the kinetic energy buffer of wind rotor can be more adequately used to smooth wind power fluctuations.Correspondingly,while guaranteeing the smoothing effect,the proposed method can effectively reduce the frequency and amplitude of pitch actions,and alleviate the pitch servo fatigue and blade stress.Finally,the proposed method is verified by the wind turbine simulator based experiments.
引文
[1]薛禹胜,雷兴,薛峰,等.关于风电不确定性对电力系统影响的评述[J].中国电机工程学报,2014,34(29):5029-5040.XUE Yusheng,LEI Xing,XUE Feng,et al.A review on impacts of wind power uncertainties on power systems[J].Proceedings of the CSEE,2014,34(29):5029-5040.
    [2]牟澎涛,赵冬梅,王嘉成.高渗透率风电接入对区域电网小信号稳定性的影响[J].电力系统自动化,2016,40(11):137-142.DOI:10.7500/AEPS20151215001.MU Pengtao,ZHAO Dongmei,WANG Jiacheng.Impact of high penetration wind power integration on small signal stability of regional power grid[J].Automation of Electric Power Systems,2016,40(11):137-142.DOI:10.7500/AEPS20151215001.
    [3]胥国毅,胡家欣,郭树锋,等.超速风电机组的改进频率控制方法[J].电力系统自动化,2018,42(8):39-44.DOI:10.7500/AEPS20171010003.XU Guoyi,HU Jiaxin,GUO Shufeng,et al.Improved frequency control strategy for over-speed wind turbines[J].Automation of Electric Power Systems,2018,42(8):39-44.DOI:10.7500/AEPS20171010003.
    [4]潘文霞,全锐,王飞.基于双馈风电机组的变下垂系数控制策略[J].电力系统自动化,2015,39(11):126-131.DOI:10.7500/AEPS20140825011.PAN Wenxia,QUAN Rui,WANG Fei.A variable droop control strategy for doubly-fed induction generators[J].Automation of Electric Power Systems,2015,39(11):126-131.DOI:10.7500/AEPS20140825011.
    [5]陈载宇,沈春,殷明慧,等.面向AGC的变速变桨风电机组有功功率控制策略[J].电力工程技术,2017,36(1):9-14.CHEN Zaiyu,SHEN Chun,YIN Minghui,et al.Review of active power control strategy for variable-speed variable-pitch wind turbine participating in AGC[J].Electric Power Engineering Technology,2017,36(1):9-14.
    [6]SENJYU T,SAKAMOTO R,URASAKI N,et al.Output power leveling of wind turbine generator for all operating regions by pitch angle control[J].IEEE Transactions on Energy Conversion,2006,21(2):467-475.
    [7]LUO Changling,BANAKAR H,SHEN Baike,et al.Strategies to smooth wind power fluctuations of wind turbine generator[J].IEEE Transactions on Energy Conversion,2007,22(2):341-349.
    [8]KIM Y,KANG M,MULJADI E,et al.Power smoothing of a variable-speed wind turbine generator in association with the rotor-speed-dependent gain[J].IEEE Transactions on Sustainable Energy,2017,8(3):990-999.
    [9]刘彬彬,杨健维,廖凯,等.基于转子动能控制的双馈风电机组频率控制改进方案[J].电力系统自动化,2016,40(16):17-22.DOI:10.7500/AEPS20150930009.LIU Binbin,YANG Jianwei,LIAO Kai,et al.Improved frequency control strategy for DFIG-based wind turbines based on rotor kinetic energy control[J].Automation of Electric Power Systems,2016,40(16):17-22.DOI:10.7500/AEPS20150930009.
    [10]廖勇,何金波,姚骏,等.基于变桨距和转矩动态控制的直驱永磁同步风力发电机功率平滑控制[J].中国电机工程学报,2009,29(18):71-77.LIAO Yong,HE Jinbo,YAO Jun,et al.Power smoothing control strategy of direct-driven permanent magnet synchronous generator for wind turbine with pitch angle control and torque dynamic control[J].Proceedings of the CSEE,2009,29(18):71-77.
    [11]VAN T L,NGUYEN T H,LEE D C.Advanced pitch angle control based on fuzzy logic for variable-speed wind turbine systems[J].IEEE Transactions on Energy Conversion,2015,30(2):578-587.
    [12]QAIS M,HASANIEN H,ALGHUWAINEM S.Output power smoothing of grid-connected permanent magnet synchronous generator driven directly by variable speed wind turbine:a review[J].The Journal of Engineering,2017,13:1755-1759.
    [13]NGUYEN T H,LEE D C,KANG J H.Power smoothening control of wind farms based on inertial effect of wind turbine systems[J].Journal of Electrical Engineering and Technology,2014,9(3):1096-1103.
    [14]de BATTISTA H,MANTZ R J.Dynamical variable structure controller for power regulation of wind energy conversion systems[J].IEEE Transactions on Energy Conversion,2004,19(4):756-763.
    [15]LIN J,SUN Y,SONG Y,et al.Wind power fluctuation smoothing controller based on risk assessment of grid frequency deviation in an isolated system[J].IEEETransactions on Sustainable Energy,2013,4(2):379-392.
    [16]胡泽春,罗浩成.大规模可再生能源接入背景下自动发电控制研究现状与展望[J].电力系统自动化,2018,42(8):2-15.DOI:10.7500/AEPS20171025015.HU Zechun,LUO Haocheng.Research status and prospect of automatic generation control with integration of large-scale renewable energy[J].Automation of Electric Power Systems,2018,42(8):2-15.DOI:10.7500/AEPS20171025015.
    [17]陈波,吴政球.基于约束因子限幅控制的双馈感应发电机有功功率平滑控制[J].中国电机工程学报,2011,31(27):130-137.CHEN Bo,WU Zhengqiu.Power smoothing control strategy of doubly-fed induction generator based on constraint factor extent-limit control[J].Proceedings of the CSEE,2011,31(27):130-137.
    [18]TANG C,SOONG W L,FREERE P,et al.Dynamic wind turbine output power reduction under varying wind speed conditions due to inertia[J].Wind Energy,2013,16(4):561-573.
    [19]BOSSANYI E A.Wind turbine control for load reduction[J].Wind Energy,2010,6(3):229-244.
    [20]WILLIS D J,NIEZRECKI C,KUCHMA D,et al.Wind energy research:state-of-the-art and future research directions[J].Renewable Energy,2018,125:133-154.
    [21]LIN Zhongwei,CHEN Zhenyu,WU Qiuwei,et al.Coordinated pitch&torque control of large-scale wind turbine based on Pareto efficiency analysis[J].Energy,2018,147:812-825.
    [22]YIN Minghui,LI Weijie,CHUNG C Y,et al.Inertia compensation scheme of WTS considering time delay for emulating large-inertia turbines[J].IET Renewable Power Generation,2017,11(4):529-538.
    [23]LI Weijie,YIN Minghui,CHEN Zaiyu,et al.Inertia compensation scheme for wind turbine simulator based on deviation mitigation[J].Journal of Modern Power Systems and Clean Energy,2017,5(2):228-238.
    [24]BOUKHEZZAR B,SIGUERDIDJANE H,HAND M M.Nonlinear control of variable-speed wind turbines for generator torque limiting and power optimization[J].Journal of Solar Energy Engineering,2006,128(4):516-530.
    [25]中国国家标准化管理委员会.电能质量:电力系统频率偏差:GB/T 15945-2008[S].北京:中国电力出版社,2008.Standardization Administration of China.Power qualityfrequency deviation for power system:GB/T 15945-2008[S].Beijing:China Electric Power Press,2008.
    [26]ANDERSON P M,MIRHEYDAR M.A low-order system frequency response model[J].IEEE Transactions on Power Systems,1990,5(3):720-729.
    [27]FERNANDEZ L M,GARCIA C A,JURADO F.Comparative study on the performance of control systems for doubly fed induction generator(DFIG)wind turbines operating with power regulation[J].Energy,2008,33(9):1438-1452.
    [28]CHANG-CHIEN L R,SUN C C,YEH Y J.Modeling of wind farm participation in AGC[J].IEEE Transactions on Power Systems,2013,29(3):1204-1211.
    [29]周连俊,殷明慧,陈载宇,等.考虑湍流频率因素的风力机最大功率点跟踪控制[J].中国电机工程学报,2016,36(9):2381-2388.ZHOU Lianjun,YIN Minghui,CHEN Zaiyu,et al.Maximum power point tracking control of wind turbines with consideration of turbulence frequency[J].Proceedings of the CSEE,2016,36(9):2381-2388.
    [30]BOSSANYI E A.GH bladed:Version 3.67:user manual[R].Bristol:Garrad Hassan and Partners Ltd,2005.
    [31]WANG N,JOHNSON K E,WRIGHT A D.FX-RLS-based feedforward control for LIDAR-enabled wind turbine load mitigation[J].IEEE Transactions on Control Systems Technology,2012,20(5):1212-1222.
    [32]JONKMAN J M,BUHL Jr M L.FAST user’s guide[R].Golden:National Renewable Energy Laboratory,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700