声学超表面抑制Mack第2模态机理与优化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation and Optimization of Acoustic Metasurfaces to Depress Mack Second Mode in Hypersonic Boundary-Layer Flow
  • 作者:赵瑞 ; 张新昕 ; 温志湧 ; 田旭东
  • 英文作者:ZHAO Rui;ZHANG Xin-xin;WEN Chihyung;TIAN Xu-dong;Beijing Institute of Technology;The Hong Kong Polytechnic University;
  • 关键词:声学超表面 ; Mack第2模态 ; 稳定性分析 ; 高超声速边界层流动 ; 直接数值模拟
  • 英文关键词:acoustic metasurface;;Mack second mode;;stability analysis;;hypersonic boundary-layer flow;;direct numerical simulation
  • 中文刊名:QTWL
  • 英文刊名:Physics of Gases
  • 机构:北京理工大学;香港理工大学;
  • 出版日期:2018-11-15
  • 出版单位:气体物理
  • 年:2018
  • 期:v.3;No.18
  • 基金:国家自然科学基金(11872116)
  • 语种:中文;
  • 页:QTWL201806007
  • 页数:6
  • CN:06
  • ISSN:10-1384/O3
  • 分类号:39-44
摘要
从理论上推导了声学超表面对平面声波的作用模型,该理论模型计及声波高阶衍射模态,从而能够计及超表面微结构之间的声学干扰.通过与数值结果对比,该模型预测的反射频率精度得到了一定程度的提高,并能够分辨出相邻孔声场之间的耦合模态.讨论了声学超表面吸声特性与阻抗特性对高超声速边界层内Mack第2模态的抑制机理,研究发现通过设计超表面阻抗特性,使得入射声波与反射声波在壁面处相位相反,同样可以抑制Mack第2模态.基于理论模型,分别优化设计得到最优的微结构几何尺寸,并通过对Mach 6平板边界层流动进行稳定性分析,验证了超表面不同声学特性的抑制效果.
        A theoretical model to describe the acoustic characteristics of plane ultrasonic acoustic waves imping on an acoustic metasurface was developed. The proposed model takes into account the high-order diffracted modes and therefore incorporates mutual coupling among neighboring cavities. With this model, the cavity geometry parameters were optimized to achieve the minimum reflection coefficient and impedance, respectively. Results reveal that the phase opposition between incident and reflective waves at the surface could largely depress the increment ratio of Mack second mode. The proposed effective impedance boundary could open up new possibilities of metasurfaces for hypersonic boundary-layer transition control.
引文
[1]陈坚强,涂国华,张毅锋,等.高超声速边界层转捩研究现状与发展趋势[J].空气动力学学报,2017,35(3):311-337.Chen J Q,Tu G H,Zhang Y F,et al.Hypersnonic boundary layer transition:what we know,where shall we go[J].Acta Aerodynamica Sinica,2017,35(3):311-337(in Chinese).
    [2]沈清,杨武兵,庄逢甘.航天飞行器中的湍流问题[J].现代防御技术,2012,40(1):21-25.Shen Q,Yang W B,Zhuang F G.Turbulence of Aerospacecraft[J].Modern Defence Technology,2012,40(1):21-25(in Chinese).
    [3]李锋,解少飞,毕志献,等.高超声速飞行器中若干气动难题的实验研究[J].现代防御技术,2014,42(5):1-7.Li F,Xie S F,Bi Z X,et al.Experimental study of several on aerodynamic problems on hypersonic vehicles[J].Modern Defence Technology,2014,42(5):1-7(in Chinese).
    [4]Bertin J J,Cummings R M.Critical hypersonic aerothermodynamic phenomena[J].Annual Review of Fluid Mechanics,2006,38:129-157.
    [5]Schneider S P.Hypersonic laminar-turbulent transition on circular cones and scramjet forebodies[J].Progress in Aerospace Sciences,2004,40(1/2):1-50.
    [6]Weihs H,Longo J,Turner J.The sharp edge flight experiment SHEFEX II,a mission overview and status[C].Proceedings of the 15thAIAA International Space Planes and Hypersonic Systems and Technologies Conference,International Space Planes and Hypersonic Systems and Technologies Conferences,Dayton:AIAA,2008.
    [7]Mack L M.Boundary-layer linear stability theory[R].Special course on stability and transition of laminar flow advisory group for aerospace research and development,AGARD Report No.709,1984.
    [8]Fedorov A.Transition and stability of high-speed boundary layers[J].Annual Review of Fluid Mechanics,2011,43:79-95.
    [9]Zhong X L,Wang X W.Direct numerical simulation on the receptivity,instability,and transition of hypersonic boundary layers[J].Annual Review of Fluid Mechanics,2012,44(1):527-561.
    [10]Fedorov A V.Prediction and control of laminar-turbulent transition in high-speed boundary-layer flows[J].Procedia IUTAM,2015,14:3-14.
    [11]Fedorov A V,Malmuth N D,Rasheed A,et al.Stabilization of hypersonic boundary layers by porous coatings[J].AIAA Journal,2001,39(4):605-610.
    [12]Rasheed A,Hornung H G,Fedorov A V,et al.Experiments on passive hypervelocity boundary-layer control using an ultrasonically absorptive surface[J].AIAA Journal,2002,40(3):481-489.
    [13]Maslov A A.Experimental and theoretical studies of hypersonic laminar flow control using ultrasonically absorptive coatings(UAC)[R].Report ISTC,2003,2172-2001.
    [14]Kozlov V F,Fedorov A V,Malmuth N D.Acoustic properties of rarefied gases inside pores of simple geometries[J].The Journal of the Acoustical Society of America,2005,117(6):3402-3412.
    [15]Brès G A,Colonius T,Fedorov A V.Acoustic properties of porous coatings for hypersonic boundary-layer control[J].AIAA Journal,2010,48(2):267-274.
    [16]Brès G A,Inkman M,Colonius T,et al.Second-mode attenuation and cancellation by porous coatings in a highspeed boundary layer[J].Journal of Fluid Mechanics,2013,726:312-337.
    [17]Zhao R,Liu T,Wen C Y,et al.Theoretical modeling and optimization of porous coating for hypersonic laminar flow control[J].AIAA Journal,2018,56(8):1-5.
    [18]Zhao R,Wen C Y,Tian X D,et al.Numerical simulation of local wall heating and cooling effect on the stability of a hypersonic boundary layer[J].International Journal of Heat and Mass Transfer,2018,121:986-998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700