炉料粒度对高炉料面炉料分布及透气性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of particle size on burden distribution of stock surface and permeability of burden layer in blast furnace
  • 作者:胡伟 ; 程树森 ; 徐文轩 ; 邦嘉文
  • 英文作者:HU Wei;CHENG Shu-sen;XU Wen-xuan;BANG Jia-wen;School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing;
  • 关键词:透气性 ; 并罐式无钟炉顶 ; 离散单元法 ; 粒级分布 ; 空隙度
  • 英文关键词:permeability;;parallel-hopper bell-less top;;discrete element method;;particle size distribution;;voidage
  • 中文刊名:IRON
  • 英文刊名:Journal of Iron and Steel Research
  • 机构:北京科技大学冶金与生态工程学院;
  • 出版日期:2018-10-15
  • 出版单位:钢铁研究学报
  • 年:2018
  • 期:v.30
  • 基金:国家重点研发计划专项资助项目(2017YFB0304300,2017YFB0304302);; 国家自然科学基金资助项目(61571040)
  • 语种:中文;
  • 页:IRON201810002
  • 页数:7
  • CN:10
  • ISSN:11-2133/TF
  • 分类号:11-17
摘要
为了研究炉料粒度对炉喉内炉料分布和料层透气性的影响,建立了4070m~3高炉并罐式无钟炉顶三维模型,应用离散单元法对炉料粒级分布为25~40、40~60和60~80mm时,炉料从料仓运动至炉喉全过程进行数值计算。结果表明,不同粒级分布的炉料在炉喉内形成的料层,其周向各区域内炉料体积分布均在±10%之间波动。随着颗粒粒度增大,料面堆尖位置沿圆周分布更接近圆形。颗粒粒度越小时,壁面效应作用越弱,边缘处空隙度相对于料面中心来说差别越小。对于25~40、40~60和60~80mm粒级炉料,边缘透气度分别是料面中间区域的1.4、2.1和2.5倍左右。因此,保证料面径向颗粒粒度合理分布,对料层透气性十分重要。
        In order to investigate the effect of particle size on burden distribution and bed permeability, the calculated model of bell-less top system with two parallel hoppers used in a 4070 m~3 blast furnace was established. The motion of burden particles with different particle size distribution(PSD) included 25-40, 40-60 and 60-80 mm from bunker to throat was calculated by discrete element method. The results show that the volume of burden can fluctuate in the range of ±10% according to the circumferential area with different particle sizes. As the particle size increases, the tip position of the stock surface is closer to the circle along the circular distribution. The permeability of border is larger than that of the center of stock surface due to the wall effect, which is easy for gas overdevelop in border. With the decreases in particle size, the influence of wall effect is also weakened and the disparity in the voidage between border and center is reduced. Based on the calculated results obtained in this study, the permeability index of border is 1.4, 2.1, 2.5 times larger than that of the center for the 25-40, 40-60, 60-80 mm PSD. If the big particles are distributed near the wall, it is easy for gas overdevelop in border, then will have bad influence on blast furnace. Thus, keeping the radial distribution of particle size in burden surface is very important for bed permeability of burden layer.
引文
[1] Mitra T, Saxén H. Investigation of coke collapse in the blast furnace using mathematical modeling and small scale experiments[J]. ISIJ International, 2016, 56(9):1570.
    [2] Kashihara Y. Development of new charging technique for mixing coke in ore layer at blast furnace with center feed type bell-less top[J]. ISIJ International, 2017, 57(4):665.
    [3] Adema A T, Yang Y X, Boom B. Discrete element method-computational fluid dynamic simulation of the materials flow in an iron-making blast furnace[J]. ISIJ International, 2010, 50(7):954.
    [4] Allen K G, von Backstrm T W, Krger D G. Packed bed pressure drop dependence on particle shape, size distribution, packing arrangement and roughness[J]. Powder Technology, 2013, 246:590.
    [5] Koekemoer A, Luckos A. Effect of material type and particle size distribution on pressure drop in packed beds of large particles: Extending the Ergun equation[J]. Fuel, 2015, 158:232.
    [6] Mayerhofer M, Govaerts J, Parmentier N, et al. Experimental investigation of pressure drop in packed beds of irregular shaped wood particles[J]. Powder Technology, 2011, 205:30.
    [7] Zhao H T, Du P, Ren L Q, et al. Simultaneously overdeveloped central and peripheral gas flows of a blast furnace[J]. ISIJ International, 2015, 55(10):2064.
    [8] Nag S, Gupta A, Paul S, et al. Prediction of heap shape in blast furnace burden distribution[J]. ISIJ International, 2014, 54(7):1517.
    [9] Nag S, Guha M, Kundu S, et al. Mass distribution in the falling stream of burden materials[J]. ISIJ International, 2008, 48(9):1316.
    [10] Gan J Q, Zhou Z Y, Yu A B. A GPU-based DEM approach for modelling of particulate systems[J]. Powder Technology, 2016, 301:1172.
    [11] Ariyama T, Natsui S, Kon T, et al. Recent progress on advanced blast furnace mathematical models based on discrete method[J]. ISIJ International, 2014, 54(7):1457.
    [12] 徐宽, 白明华. 竖炉内颗粒、空隙率及气流分布模拟[J]. 钢铁, 2017, 52(7):27.(Xu K, Bai M H. Numerical simulation of burden, porosity and gas distributions inside shaft furnace[J]. Iron and Steel, 2017, 52(7):27.)
    [13] 李海峰, 游洋, 韩立浩, 等. 加焦方式对气化炉内气流分布的影响[J]. 材料与冶金学报, 2016, 15(1):12.(Li H F, You Y, Han L H, et al. Influence of coke charging patterns on the gas flow distribution in COREX melter gasifier[J]. Journal of Materials and Metallurgy, 2016, 15(1):12.)
    [14] 李超, 程树森, 赵国磊, 等. 串罐式无钟高炉炉顶炉料运动的离散元分析[J]. 过程工程学报, 2015, 15(1):1.(Li C, Cheng S S, Zhao G L, et al. Analysis of particles movement in the serial-hopper bell-less top of blast furnace with discrete element method [J]. The Chinese Journal of Process Engineering. 2015, 15(1):1.)
    [15] 胡国明. 颗粒系统的离散元素法分析仿真[M]. 武汉: 武汉理工大学出版社, 2010.(Hu G M. Analysis and Simulation of Granular System by Discrete Element Method Using EDEM[M]. Wuhan: Wuhan University of Technology Press, 2010.)
    [16] 吴铿, 折媛, 刘起航, 等. 高炉大型化后对焦炭性质及在炉内劣化的思考[J]. 钢铁, 2017, 52(10):1.(Wu K, She Y, Liu Q H, et al. Consideration on properties of coke and coke deterioration after large-scale blast furnace[J]. Iron and Steel, 2017, 52(10):1.)
    [17] 徐文轩, 程树森, 赵国磊, 等. 并罐式无钟炉顶装料过程中炉料运动及分布的离散元分析[J]. 过程工程学报, 2016, 16(6):1038.(Xu W X, Cheng S S, Zhao G L, et al. Analysis of particles movement and size distribution in parallel-hopper bell-less top of blast furnace with discrete element method[J]. The Chinese Journal of Process Engineering, 2016, 16(6):1038.)
    [18] 朱仁良. 宝钢高炉科学管理稳定生产实践[J]. 炼铁, 2016, 35(4):1.(Zhu R L. Stable production practice in Baosteel′s BF under scientific management[J]. Ironmaking, 2016, 35(4):1.)
    [19] Li H, Luo Z, Zou Z, et al. Mathematical simulation of burden distribution in COREX melter gasifier by discrete element method[J]. Journal of Iron and Steel Research International, 2012, 19(9):36.
    [20] Nag S, Gupta A, Paul S, et al. Prediction of heap shape in blast furnace burden distribution[J]. ISIJ International, 2014, 54(7):1517.
    [21] 徐文轩, 程树森, 牛群, 等. 并罐式无钟炉顶装料模式对料面炉料分布的影响[J]. 钢铁, 2017, 52(12):8.(Xu W X, Cheng S S, Niu Q, et al. Effects of charging patterns of bell-less top blast furnace with two parallel hoppers on burden distribution of stock surface[J]. Iron and Steel, 2017, 52(12):8.)
    [22] 张建良, 邱家用, 国宏伟, 等. 基于三维离散元法的无钟高炉装料行为[J]. 北京科技大学学报, 2013, 35(12):1643.(Zhang J L, Qiu J Y, Guo H W, et al. Charging behavior in a bell-less blast furnace based on 3D discrete element method[J]. Journal of University of Science and Technology Beijing, 2013, 35(12):1643.)
    [23] Luckos A, Bunt J R. Pressure-drop predictions in a fixed-bed coal gasifier[J]. Fuel, 2011, 90(3):917.
    [24] Jajcevic D, Siegmann E, Radeke C, et al. Large-scale CFD-DEM simulations of fluidized granular systems[J]. Chemical Engineering Science, 2013, 98:298.
    [25] Atmakidis T, Kenig E Y. CFD-based analysis of the wall effect on the pressure drop in packed beds with moderate tube/particle diameter ratios in the laminar flow regime[J]. Chemical Engineering Journal, 2009, 155:404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700