循环加载方向角对饱和粉土不排水动力特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of the direction angle of cyclic loading on undrained cyclic behavior of saturated silt
  • 作者:周正龙 ; 陈国兴 ; 赵凯 ; 吴琪 ; 马维嘉
  • 英文作者:ZHOU Zheng-long;CHEN Guo-xing;ZHAO Kai;WU Qi;MA Wei-jia;Institute of Geotechnical Engineering,Nanjing Tech.University;
  • 关键词:粉土液化 ; 循环加载方向角 ; 循环应力比 ; 孔隙水压力 ; 广义剪应变 ; 动强度
  • 英文关键词:silt liquefaction;;the direction angle of cyclic loading;;cyclic stress ratio;;pore water pressure;;generalized shear strain;;cyclic resistance ratio
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:南京工业大学岩土工程研究所;
  • 出版日期:2018-01-10
  • 出版单位:岩土力学
  • 年:2018
  • 期:v.39;No.284
  • 基金:国家科技重大专项(No.2014CB047005);; 国家自然科学基金项目(No.41172258,No.51438004)~~
  • 语种:中文;
  • 页:YTLX201801006
  • 页数:9
  • CN:01
  • ISSN:42-1199/O3
  • 分类号:43-51
摘要
利用GDS空心圆柱仪进行了一系列主应力方向角?d变化的轴向、扭转、内压和外压四向耦合不排水循环剪切试验。在均等固结条件下,着重研究了循环加载方向角?d0对饱和粉土动力特性的影响。试验结果表明:饱和粉土的双规准化孔压发展模式与?d0无关,但受循环应力比CSR的影响;广义剪应变的发展模式不受?d0的影响。在循环剪切过程中,循环加载方向的变化对粉土的不排水动强度有显著影响,饱和粉土的动强度CRR随着?d0的增大呈现出先减小后增大的变化趋势,且当?d0=45°时CRR最小。同时,建立了反映?d0与CSR影响的孔压、变形的模型,并给出了相应的动强度表达式。
        This study investigated the impact of the direction of cyclic loading on the cyclic behavior of saturated silt under isotropic consolidation condition. GDS hollow cylinder torsional apparatus was employed to perform a series of undrained cyclic shear tests with various principal stress direction angle ?d0 coupling with four dynamic loads, i.e., inner pressure, outer pressure, axial load and torque. The results show that the double normalized pore pressure is independent on the direction angle of cyclic loading, but sensitive to the cyclic stress ratio CSR. The generalized shear strain is independent on the direction angle of cyclic loading during cyclic loading. The direction angle of cyclic loading during cyclic shearing has a considerable influence on undrained cyclic resistance ratio of saturated silt. Cyclic resistance ratio CRR initially decreases then increases as the direction angle of cyclic loading increase, with a minimum value for ?d0=45°. Meanwhile, equations for pore water pressure and deformation to quantify the influence of ?d0 and CSR are established and the corresponding expression for CRR is given.
引文
[1]SATO K,YOSHIDA N.Effect of principal stress direction on undrained cyclic shear behaviour of dense sand[C]//Proceedings of the Ninth International Offshore and Polar Engineering Conference.[S.l.]:[s.n.],1999:542-547.
    [2]黄博,凌道盛,丁浩,等.斜入射地震波在土体中产生的动应力路径及试验模拟[J].岩土工程学报,2013,35(2):276-283.HUANG Bo,LING Dao-sheng,DING Hao,et al.Seismic stress path induced by obliquely incident waves and its simulation[J].Chinese Journal of Geotechnical Engineering,2013,35(2):276-283.
    [3]ARTHUR J R F,MENZIES B K.Inherent anisotropy in a sand[J].Geotechnique,1972,22(1):115-128.
    [4]SYMES M,GENS A,HIGHT D W.Undrained anisotropy and principal stress rotation in saturated sand[J].Geotechnique,1984,34(1):11-27.
    [5]SAYAO A,VAID Y P.Effect of intermediate principal stress on the deformation response of sand[J].Canadian Geotechnical Journal,1996,33(5):822-828.
    [6]于艺林,张建民,童朝霞,等.定轴排水剪切试验中各向异性砂土的力学响应[J].岩土力学,2011,32(6):1637-1642.YU Yi-lin,ZHANG Jian-min,TONG Zhao-xia,et al.Behavior of anisotropic mica sand under fixed principal stress axes drained shear test[J].Rock and Soil Mechanics,2011,32(6):1637-1642.
    [7]LADE P V,RODRIGUEZ N M,VAN DYCK E J.Effects of principal stress directions on 3D failure conditions in cross-anisotropic sand[J].Journal of Geotechnical and Geoenvironmental Engineering,2014,140(2):04013001.
    [8]KANDASAMI R K,MURTHY T G.Experimental studies on the influence of intermediate principal stress and inclination on the mechanical behaviour of angular sands[J].Granular Matter,2015,17(2):217-230.
    [9]RAZEGHI H R,ROMIANI H M.Experimental investigation on the inherent and initial induced anisotropy of sand[J].KSCE Journal of Civil Engineering,2015,19(3):583-591.
    [10]ISHIHARA K,TOWHATA I.Sand response to cyclic rotation of the direction of cyclic loadings as induced by wave loads[J].Soils and Foundations,1983,23(4):11-26.
    [11]ISHIHARA K,YAMAZAKI A.Analysis of wave-induced liquefaction in seabed deposits of sand[J].Soils and Foundations,1984,24(3):85-100.
    [12]郭莹,栾茂田,何杨,等.主应力方向循环变化对饱和松砂不排水动力特性的影响[J].岩土工程学报,2005,27(4):403-409.GUO Ying,LUAN Mao-tian,HE Yang,et al.Effect of variation of principal stress orientation during cyclic loading on undrained dynamic behavior of saturated loose sands[J].Chinese Journal of Geotechnical Engineering,2005,27(4):403-409.
    [13]许成顺,高英,杜修力,等.双向耦合剪切条件下饱和砂土动强度特性试验研究[J].岩土工程学报,2014,36(12):2335-2340.XU Cheng-shun,GAO Ying,DU Xiu-li,et al.Dynamic strength of saturated sand under bi-directional cyclic loading[J].Chinese Journal of Geotechnical Engineering,2014,36(12):2335-2340.
    [14]李男,黄博,凌道盛,等.斜椭圆应力路径下饱和松砂动力特性试验研究[J].岩土力学,2015,36(1):156-162.LI Nan,HUANG Bo,LING Dao-sheng,et al.Experimental research on behaviors of saturated loose sand subjected to oblique ellipse stress path[J].Rock and Soil Mechanics,2015,36(1):156-162.
    [15]潘华,陈国兴,刘汉龙.变幅波浪荷载下饱和南京细砂残余孔隙水压力特性[J].岩石力学与工程学报,2011,30(4):843-849.PAN Hua,CHEN Guo-xing,LIU Han-long.Residual Pore water pressure properties of Nanjing’s saturated fine sand under wave loads with variable amplitudes[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(4):843-849.
    [16]周正龙,陈国兴,吴琪.四向振动空心圆柱扭剪仪模拟主应力轴旋转应力路径能力分析[J].岩土力学,2016,37(增刊1):126-132.ZHOU Zheng-long,CHEN Guo-xing,WU Qi.Analysis on capabilities of stress paths of HCA to simulate the principal stress rotation under four dynamic loads[J].Rock and Soil Mechanics,2016,37(Supp.1):126-132.
    [17]ANDERSON K H.Bearing capacity under cyclic loading-offshore,along the coast,and on land[J].Canadian Geotechnical Journal,2009,46(5):513-535.
    [18]王炳辉,陈国兴.循环荷载下饱和南京细砂的孔压增量模型[J].岩土工程学报,2011,33(2):188-194.WANG Bing-hui,CHEN Guo-xing.A pore water pressure increment model for saturated Nanjing fine sand subjected to cyclic loading[J].Chinese Journal of Geotechnical Engineering,2011,33(2):188-194.
    [19]张建民,谢定义.饱和砂土振动孔隙水压力增长的实用算法[J].水利学报,1991,(8):45-51.ZHANG Jian-min,XIE Ding-yi.A practical method for calculation of seismic excess pore water pressure in saturated sand[J].Journal of Hydraulic Engineering,1991,(8):45-51.
    [20]SEED H B,MARTIN P P,LYSMER J.The generation and dissipation of pore water pressure during soil liquefaction(Report No.EERC 75-26)[R].Berkeley:Earthquake Engineering Research Center,University of California at Berkeley,USA,1975.
    [21]张健,高玉峰,沈扬,等.波浪荷载作用下饱和粉土反正弦孔压拟合参数影响因素分析[J].岩土力学,2011,32(3):727-732.ZHANG Jian,GAO Yu-feng,SHEN Yang,et al.Factor analysis of fitting parameter for saturated silt arcs in pore water pressure under wave loading[J].Rock and Soil Mechanics,2011,32(3):727-732.
    [22]陈国兴,刘雪珠.南京粉质黏土与粉砂互层土及粉细砂的振动孔压发展规律研究[J].岩土工程学报,2004,26(1):79-82.CHEN Guo-xing,LIU Xue-zhu.Study on dynamic pore water pressure in silty clay inter bedded with fine sand of Nanjing[J].Chinese Journal of Geotechnical Engineering,2004,26(1):79-82.
    [23]SIVATHAYALAN S,LOGESWARAN P,MANMATHARAJAN V.Cyclic resistance of a loose sand subjected to rotation of principal stresses[J].Journal of Geotechnical and Geoenvironmental Engineering,2015,141(3):04014113.
    [24]SEED H B.Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes[J].Journal of the Geotechnical Engineering Division,1979,105(2):201-255.
    [25]王志华,周恩全,陈国兴.孔压增长后的饱和砂土流体特性及其孔压相关性[J].岩土工程学报,2012,34(3):528-533.WANG Zhi-hua,ZHOU En-quan,CHEN Guo-xing,et al.Fluid characteristics dependent on excess pore water pressure of saturated sand after growth of pore pressure[J].Chinese Journal of Geotechnical Engineering,2012,34(3):528-533.
    [26]张克绪.饱和砂土的液化应力条件[J].地震工程与工程振动,1984,4(1):99-109.ZHANG Ke-xu.Stress condition inducing liquefaction of saturated sand[J].Earthquake Engineering and Engineering Vibration,1984,4(1):99-109.
    [27]SCHMERTMANN J H.Effect of shear stress on dynamic bulk modulus of sand[R].Gainesville:Department of Civil Engineering,Florida University,1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700