赤峰市敖汉旗土壤有机碳含量的垂直分布及其影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Vertical distribution of soil organic carbon content and its influencing factors in Aaohan,Chifeng
  • 作者:李龙 ; 秦富仓 ; 姜丽娜 ; 姚雪玲
  • 英文作者:LI Long;QIN Fucang;JIANG Lina;YAO Xueling;College of Desert Control Science and Engineering,Inner Mongolia Agricultural University;Research Institute of Forestry New Technology,Chinese Academy of Forestry;Institute of Desertification studies,Chinese Academy of Forestry;
  • 关键词:土壤有机碳 ; 土壤深度 ; 广义相加模型(GAM) ; 半干旱区
  • 英文关键词:soil organic carbon;;soil depth;;Generalized Additive Model(GAM);;semi-arid zone
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:内蒙古农业大学沙漠治理学院;中国林业科学研究院林业新技术研究所;中国林业科学研究院林业荒漠化研究所;
  • 出版日期:2018-09-26 14:14
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金青年基金项目(41807079)
  • 语种:中文;
  • 页:STXB201901034
  • 页数:10
  • CN:01
  • ISSN:11-2031/Q
  • 分类号:349-358
摘要
选取内蒙古赤峰市敖汉旗为研究对象,运用广义相加模型—分析敖汉旗0—100 cm深度土壤有机碳含量的空间变异特征,分析影响土壤有机碳空间变异的主导因素。结果表明,0—100 cm深度土壤有机碳含量的变化范围为0.23—20.71 g/kg,且随着土壤深度的增加有机碳含量逐渐降低。广义相加模型可以较为准确地解释土壤有机碳含量与环境因素之间的关系。植被因素的变化是影响表层土壤有机碳含量最重要的因素;在深层土壤中,含水率的变化是影响有机碳含量的主要因素。影响土壤有机碳空间变异的主导因素随着土壤深度的变化也表现出较大的差异。
        In this study,a soil survey was carried out in Aohan County in Chifeng,Inner Mongolia. A generalized additive model( GAM) was used to analyze the spatial variability of the soil organic content( SOC) in soil depths of 0—100 cm.The results showed that SOC varied from 0. 23 to 20. 71 g/kg in 0—100 cm soil depths,and decreased gradually with increasing soil depths. The GAM fitted the relationship between SOC and environmental factors well. With increasing soil depth,SOC also varied. Vegetation was the dominant factor affecting SOC in surface soil; soil moisture was the dominant factor affecting SOC in deeper soil. The dominant factors that influenced the variation of soil organic carbon also showed considerable differences with increasing soil depth.
引文
[1] Post W M,Emanuel W R,Zinke P J,Stangenberger A G. Soil carbon pools and world life zones. Nature,1982,298(5870):156-159.
    [2] Bohn H L. Estimate of organic carbon in world soils:II. Soil Science Society of America Journal,1982,46(5):1118-1119.
    [3]孙文义,郭胜利.黄土丘陵沟壑区小流域土壤有机碳空间分布及其影响因素.生态学报,2011,31(6):1604-1616.
    [4] Ruiz-Colmenero M,Bienes R,Eldridge D J,Marques M J. Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in the central Spain. CATENA,2013,104:153-160.
    [5]李忠佩,林心雄,程励励.施肥条件下瘠薄红壤的物理肥力恢复特征.土壤,2003,35(2):112-117.
    [6]王玮,邬建国,韩兴国.内蒙古典型草原土壤固碳潜力及其不确定性的估算.应用生态学报,2012,23(1):29-37.
    [7]王征,刘国彬,许明祥.黄土丘陵区植被恢复对深层土壤有机碳的影响.生态学报,2010,30(14):3947-3952.
    [8] Jobbágy E G,Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications,2000,10(2):423-436.
    [9]李龙.赤峰市敖汉旗土壤有机碳时空变异研究.内蒙古农业大学,2017.
    [10]张保刚,梁慧春.草地土壤机械组成研究综述.辽宁农业科学,2009,(6):38-41.
    [11] Hastie T J,Tibshirani R J. Generalized Additive Models. London:Chapman&Hall,1990.
    [12] Barry S C,Welsh A H. Generalized additive modelling and zero inflated count data. Ecological Modelling,2002,157(2/3):179-188.
    [13] Chen Q X,Ibrahim J G. Semiparametric models for missing covariate and response data in regression models. Biometrics,2006,62(1):177-184.
    [14] Gamma Design Software. GS+User's guide Version 7. Geo Statistics for the Environmental Sciences. Plainwell,Michigan:Gamma Design Software,LLC,2004:160-160.
    [15]全国土壤普查办公室.中国土壤普查数据.北京:中国农业出版社,1997.
    [16]梁启鹏,余新晓,庞卓,王琛,吕锡芝.不同林分土壤有机碳密度研究.生态环境学报,2010,19(4):889-893.
    [17] Nielsen D R,Bouma J. Soil Satial Variability. Pudoc:Wageningen,1985.
    [18] Rumpel C,K9gel-Knabner I. Deep soil organic matter-a key but poorly understood component of terrestrial C cycle. Plant and Soil,2011,338(1/2):143-158.
    [19] SaloméC,Nunan N,Pouteau V,Lerch T Z,Chenu C. Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Global Change Biology,2010,16(1):416-426.
    [20] Fierer N,Allen A S,Schimel J P,Holden P A. Controls on microbial CO2production:a comparison of surface and subsurface soil horizons. Global Change Biology,2003,9(9):1322-1332.
    [21] Liu Z P,Shao M A,Wang Y Q. Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region,China.Agriculture,Ecosystems&Environment,2011,142(3/4):184-194.
    [22] Chaplot V,Bouahom B,Valentin C. Soil organic carbon stocks in Laos:spatial variations and controlling factors. Global Change Biology,2010,16(4):1380-1393.
    [23] Scott N A,Tate K R,Giltrap D J,Smith C T,Wlide H R,Newsome P J F,Davis M R. Monitoring land-use change effects on soil carbon in New Zealand:quantifying baseline soil carbon stocks. Environmental Pollution,2002,116(S1):S167-S186.
    [24] Prietzel J,Christophel D. Organic carbon stocks in forest soils of the German Alps. Geoderma,2014,221-222:28-39.
    [25]祖元刚,李冉,王文杰,苏冬雪,王莹,邱岭.我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性.生态学报,2011,31(18):5207-5216.
    [26]渠开跃,冯慧敏,代力民,周莉.辽东山区不同林型土壤有机碳剖面分布特征及碳储量研究.土壤通报,2009,40(6):1316-1320.
    [27]付美云,杨宁,杨满元,林仲桂.衡阳紫色土丘陵坡地不同恢复阶段土壤微生物与养分的耦合关系.生态环境学报,2015,24(1):41-48.
    [28] Yeakley J A,Swank W T,Swift L W,Hornberger G M,Shugart H H. Soil moisture gradients and controls on a southern Appalachian hillslope from drought through recharge. Hydrology and Earth System Sciences,1998,2(1):41-49.
    [29]牛海,李和平,赵萌莉,韩雄,董晓红.毛乌素沙地不同水分梯度根系垂直分布与土壤水分关系的研究.干旱区资源与环境,2008,22(2):157-163.
    [30]匡文浓,钱建强,马群,刘志民.五种荒漠灌木群落土壤有机碳垂直分布及其与根系分布的关系.生态学杂志,2016,35(2):275-281.
    [31]王凯,宋立宁,张成龙,唐达,吴祥云.科尔沁沙地典型林分土壤有机碳储量与根际效应的关系.水土保持学报,2013,27(6):221-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700