基于重载车辆性能的高速公路长大纵坡临界坡长确定
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Critical length determination for long and longitudinal slope of expressway based on performance of heavy duty vehicles
  • 作者:徐婷 ; 赵磊 ; 张敏 ; 李敏 ; 刘建蓓
  • 英文作者:XU Ting;ZHAO Lei;ZHANG Min;LI Min;LIU Jian-bei;School of Automobile, Chang'an University;CCCC First Highway Consultants Co.,LTD.;
  • 关键词:交通工程 ; 交通安全 ; 临界坡长 ; 车速曲线 ; 比功率 ; 重载车辆
  • 英文关键词:traffic engineering;;traffic safety;;critical length;;speed profile;;power-to-weight ratio;;heavy vehicle
  • 中文刊名:XAGL
  • 英文刊名:Journal of Chang'an University(Natural Science Edition)
  • 机构:长安大学汽车学院;中交第一公路勘察设计研究院有限公司;
  • 出版日期:2019-05-15
  • 出版单位:长安大学学报(自然科学版)
  • 年:2019
  • 期:v.39;No.191
  • 基金:国家重点研发计划项目(2017YFC0803900);; 国家自然科学基金项目(51878066);; 中央高校基本科研业务费专项资金项目(310822161010,300102228206)
  • 语种:中文;
  • 页:XAGL201903013
  • 页数:9
  • CN:03
  • ISSN:61-1393/N
  • 分类号:112-120
摘要
针对由山区高速公路纵坡坡度和坡长组合设置不合理,导致长大纵坡路段交通事故频发的问题,通过分析重型车辆上下坡运行速度特性及受力情况,以陕汽生产的F3000重载汽车为例,通过理论推导构建重型车辆公路纵坡爬坡及下坡车速与坡长理论模型,模拟不同比功率重型车辆上、下坡运行速度与坡长的变化关系,并确定高速公路合理的上下坡临界坡长。研究中假设工况为高速公路坡度1%~6%,上坡车辆最高初速度和最低末速分别为80、50 km/h,下坡最低初速度和最高末速度为0、80 km/h。使用MATLAB模拟计算其坡度与车速的变化规律。研究结果表明:上坡过程中,以80 km/h的初速度为例,稳定车速为45~61 km/h;当坡度一定时,比功率越大的车型速度降低的越快,稳定行驶速度越大,达到稳定行驶车速的平衡坡长越长。下坡过程中,当坡度一定时比功率越大的车型,车速增大越多,稳定行驶速度越大,达到稳定行驶车速的平衡坡长就越短。在坡度为1%~3%时,无须设置爬坡车道;当坡度大于3%时,比功率较低的车型,爬坡性能较差,车速下降较快,需要设置爬坡车道。重型车辆在4%、5%、6%的坡度行驶时,设置避险车道的坡长阈值分别为5.5、4、3 km。研究成果可为山区公路线形的合理设计、道路的安全防护以及爬坡车道与避险车道的设置提供理论依据,从而提高山区高速公路重型车辆的行车安全。
        Aimed at the unreasonable combination of different lengths and grades of slopes of expressway in mountainous areas have led to an increase in traffic accidents on long and steep slopes. A model was designed to explore the relationship between the heavy-vehicle speed characteristics and slope length after analyzing the speed and stress distribution in moving uphill and downhill taking F3000 heavy-haul vehicle produced which by Shaanxi automobile company as an example. The reasonable critical slope length was determined by simulating the relationship between the speed of heavy vehicles with different specific power and the slope length during uphill and downhill. The research scenario was assumed that the slope of the expressway was 1% to 6%, the initial speed of uphill was 80 km/h and the final speed range was 50 km/h, and the initial speed of downhill was 0 km/h and the final speed was 80 km/h. The relationship between the slope and the speed was calculated through MATLAB simulations. The results show that when going uphill, if the initial speed is 80 km/h, the stable speed is 45 to 61 km/h. When the slope is constant, the higher the specific power of the heavy vehicle, the faster is the decrease in the speed, and the larger the stable speed, the longer is the equilibrium slope required to achieve stable speed. In the downhill process, when the slope is constant, the higher the specific power of the heavy vehicle, the greater the speed increase, the higher is the increase in speed, and further, the greater the steady operation speed, the shorter is the equilibrium slope length to reach the final driving speed. It is not necessary to set a climbing lane when the grade is 1% to 3%. When the slope is greater than 3%, the speed decreases fast for lower specific power of vehicles with a poor climbing performance. It is therefore required to set up a climbing lane or other safety facilities to increase road safety. When heavy vehicles run in the 4%, 5%, and 6% slope range, the thresholds for setting escape lanes are 5.5, 4, 3 km, respectively. The results can provide guidelines for the rational design of mountain highway alignment and road safety protection, as well as the designing of climbing lane and escape lane in order to improve the driving safety of heavy vehicles on the mountain expressway. 6 tabs, 9 figs, 26 refs.
引文
[1] 梁国华,马荣国,沈翔,等.高速公路爬坡车道设置的有效性[J].长安大学学报:自然科学版,2014,34(1):23-30.LIANG Guo-hua,MA Rong-guo,SHEN Xiang,et al.Effectiveness of building climbing lane on expressway[J].Journal of Chang'an University:Natural Science Edition,2014,34(1):23-30.
    [2] 贺宜,吴超仲,陈志军,等.长途客车事故现状及致因分析[J].交通信息与安全,2011,29(5):78-82.HE Yi,WU Chao-zhong,CHEN Zhi-jun,et al.Coach bus traffic accidents and their causes analysis[J].Journal of Transport Information and Safety,2011,29(5):78-82.
    [3] 李明国,牛晓霞,申爱琴.山区高速公路沥青路面的抗车辙能力[J].长安大学学报:自然科学版,2006,26(6):19-22.LI Ming-guo,NIU Xiao-xia,SHEN Ai-qin.Anti-rut ability of asphalt pavement on mountain freeway[J].Journal of Chang'an University:Natural Science Edition,2006,26(6):19-22.
    [4] AASHTO.A policy on geometric design of highways and streets[M].Washington DC:AASHTO,2011.
    [5] HARWOOD D W.Review of truck characteristics as factors in roadway design[M].Washington DC:Transportation Research Board,2003.
    [6] LAN C J,MENENDEZ M.Truck speed profile models for critical length of grade[J].Journal of Transportation Engineering,2003,129(4):408-419.
    [7] ECHAVEGUREN T,CARRASCO D.Estimation of critical length in ascending grades of two-lane rural roads[J].Revista Ingenieria De Construcción,2015,30(1):5-16.
    [8] CASTILLO-MANZANO J I,CASTRO-NUNO M,FAGEDA X.Exploring the relationship between truck load capacity and traffic accidents in the European Union[J].Transportation Research Part E,2016,88:94-109.
    [9] ARKATKAR S S,ARASAN V T.Effect of gradient and its length on performance of vehicles under heterogeneous traffic conditions[J].Journal of Transportation Engineering,2010,136(12):1120-1136.
    [10] JAIN M,ARKATKAR S,JOSHI G.Studying effect of weight-to-power ratio on acceleration profile of trucks under varying gradient conditions[C]//EASTS.Proceedings of the Eastern Asia Society for Transportation Studies.Tokyo:EASTS,2015:1-10.
    [11] BΦRNES V,AAKRE A.Description,validation and use of a model to estimate speed profile of heavy vehicles in grades[J].Procedia-Social and Behavioral Ciences,2011,16:409-418.
    [12] TORBIC D,HARWOOD D,RICHARD K,et al.Determining critical length of grade for geometric design of vertical alignments[J].Transportation Research Record,2004(1881):36-45.
    [13] LAN C J,MENENDEZ M.Truck speed profile models for critical length of grade[J].Journal of Transportation Engineering,2003,129(4):408-419.
    [14] BOKARE P S,MAURYA A K.Acceleration and deceleration behaviour of truck on Indian highway[J].Indian Highways,2014,42(3):59-74.
    [15] RAKHA H,YU B.Truck performance curves reflective of truck and pavement characteristics[J].Journal of Transportation Engineering,2004,130(6):753-767.
    [16] 孟祥海,关志强,郑来.基于几何线形指标的山区高速公路安全性评价[J].中国公路学报,2011,24(2):103-108.MENG Xing-hai,GUAN Zhi-qiang,ZHENG Lai.Safety evaluation of mountainous expressway based on geometric alignment indexes[J].China Journal of Highway and Transport,2011,24(2):103-108.
    [17] 石飞荣,杨少伟,赵永平,等.山区高速公路车辆上坡最大纵坡及坡长限制[J].长安大学学报:自然科学版,2004,24(5):27-30.SHI Fei-rong,YANG Shao-wei,ZHAO Yong-ping,et al.Maximum longitudinal slope and slope length limit of the vehicle in mountain area[J].Journal of Chang'an University:Natural Science Edition,2004,24(5):27-30.
    [18] 石飞荣,杨少伟.山区高速公路车辆下行最大纵坡及坡长限制分析[J].交通运输工程学报,2001,1(1):68-73.SHI Fei-rong,YANG Shao-wei.The maximum longitudinal slope and its length of mountain-expressway under the condition of vehicle's driving down[J].Journal of Traffic and Transportation Engineering,2001,1(1):68-73.
    [19] 庄传仪,赵一飞,潘兵宏,等.公路纵坡设计关键参数研究[J].中国公路学报,2009,22(4):39-44.ZHUANG Chuan-yi,ZHAO Yi-fei,PAN Bing-hong,et al.Research on key parameter of highway longitudinal grade design[J].China Journal of Highway and Transport,2009,22(4):39-44.
    [20] 周荣贵,江立生,孙家风.公路纵坡坡度和坡长限制指标的确定[J],公路交通科技,2004,21(7):1-4.ZHOU Rong-gui,JIANG Li-sheng,SUN Jia-feng.The study of highway gradient and grade length limit[J].Journal of Highway and Transportation Research and Development,2004,21(7):1-4.
    [21] 徐婷,李敏,杨新新,等.重载车爬坡下的公路临界坡长确定[J].交通信息与安全,2016,34(3):88-95.XU Ting,LI Min,YANG Xin-xin,et al.The critical length of slopes on highways for heavy-duty vehicles[J].Journal of Transportation Information and Security,2016,34(3):88-95.
    [22] 潘兵宏,孙元琪,曹杰.基于恢复速度的山区高速公路连续上坡缓坡设计参数研究[J].公路,2014(2):77-84.PAN Bing-hong,SUN Yuan-qi,CAO Jie.Research on gentle slope design parameters of continuous uphill slope section of mountainous highway based on speed recovery[J].Highway,2014(2):77-84.
    [23] 严新平,黄合来,马明.美国道路交通安全现状及研究热点[J].交通信息与安全,2009,27(5):1-9.YAN Xin-ping,HUANG He-lai,MA Ming.Road safety in the United States:State of the art and the practice[J].Journal of Transportation Information and Safety,2009,27(5):1-9.
    [24] AASHTO.AASHTO LRFD bridge design specifications:US customary units[M].Washington DC:AASHTO,2010.
    [25] 王宏图,于雷,郝艳召,等.重型机动车比功率计算方法研究[J].安全与环境工程,2011,18(2):124-127.WANG Hong-tu,YU Lei,HAO Yan-zhao,et al.Calculation of vehicle specification power for heavy-duty vehicles[J].Safety and Environmental Engineering,2011,18(2):124-127.
    [26] JTG B01—2014,公路工程技术标准[S].JTG B01—2014,Technical standard of highway engineering[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700