单轴加载条件下花岗岩声发射及波传播特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experiment study on acoustic emission and wave propagation in granite under uniaxial compression
  • 作者:张国凯 ; 李海波 ; 夏祥 ; 陈秋宇 ; 刘景森 ; 黄正红
  • 英文作者:ZHANG Guokai;LI Haibo;XIA Xiang;CHEN Qiuyu;LIU Jingsen;HUANG Zhenghong;State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences;School of Mechanical Engineering,Nanjing University of Science and Technolog;
  • 关键词:岩石力学 ; 单轴压缩 ; 裂纹演化 ; 应力门槛 ; 波速 ; 声发射
  • 英文关键词:rock mechanics;;uniaxial compression;;crack evolution;;stress thresholds;;acoustic velocity;;acoustic emission
  • 中文刊名:YSLX
  • 英文刊名:Chinese Journal of Rock Mechanics and Engineering
  • 机构:中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室;南京理工大学机械工程学院;
  • 出版日期:2017-05-15
  • 出版单位:岩石力学与工程学报
  • 年:2017
  • 期:v.36;No.324
  • 基金:国家自然科学基金重点项目(51439008);国家自然科学基金面上项目(41572307);国家自然科学基金青年科学基金项目(51209200)~~
  • 语种:中文;
  • 页:YSLX201705009
  • 页数:12
  • CN:05
  • ISSN:42-1397/O3
  • 分类号:97-108
摘要
采用声波、声发射一体化装置,研究单轴压缩下花岗岩波速与声发射演化规律,通过宏细观方法确定各应力门槛值,研究裂纹扩展不同阶段声发射演化及波传播规律。结果表明:细观裂纹的演化与宏观变形直接对应,由于微裂纹主要沿轴向扩展,导致轴向刚度对裂纹起裂及贯通的敏感度弱于非线性增长的侧向变形,瞬时泊松比曲线斜率变化点与应力门槛值对应,声发射测试确定的起裂应力比宏观应变法偏小,但反映了微裂纹的初始萌生;采用实测波速变化分析声发射震源的时空及幅值演化分布,较好地描绘了裂纹的扩展过程,由于不同阶段声发射信号的幅值及能量存在差异,导致声发射特征参数演化规律差异较大(尤其在损伤应力之后),AE能量在破坏前呈突发性增长,可作为灾害性破坏的前兆;加载初始阶段,由于微裂隙的闭合,波速及波幅均随应力逐渐增大,但增加速率逐渐下降,侧向波速在闭合应力附近基本达到峰值,此后一定阶段基本保持不变,但其他方向波速则继续增大,随着波传播方向与径向夹角的增大,波速增加幅度及波速下降点对应的应力(损伤应力前、后)逐渐增大,峰值应力附近对应波速下降幅度减小;波速受损伤演化的影响要滞后于声发射事件。
        The acoustic emission(AE) and wave propagation in granite under uniaxial compression were measured with the ultrasonic wave and AE synchronous monitoring devices. The stress thresholds were determined with the macro-micro methods firstly. Then evolution of AE and wave propagation during different phases were studied. The result shows that the evolution of micro cracks is related to the macroscopic deformation closely. As the cracks propagate mainly along axial direction under uniaxial compression,the axial stiffness is less sensitive than the nonlinear lateral deformation to the crack initiation and coalescence. The slope variation point of the instantaneous Poisson's ratio coincides with the stress thresholds. Crack initiation stress determined by AE monitoring is smaller than that by the macro strain methods. However,the initiation of micro crack is accurately reflected by AE. The temporal and spatial hypocenter distribution of AE events was refined based on the measured variation of velocity,which depicts the localization of the cracks or their propagation well. Because the amplitude and energy of AE signals emitted at different stages differ greatly,the variations of the characteristic parameters related to the crack propagation are different,especially after the crack damage stress. The outburst increase of AE energy before rock failure can be a precursor to catastrophic damage. At the initial compaction stage,the ultrasonic velocity and amplitude increase with the axial stress. However,the increasing rate decreases gradually. The lateral velocity reaches the peak near crack closure stress and remains constant in a certain later stage. Meanwhile,velocities along the other directions keep increasing. With the increase of the angle to the radial direction,the increment and the stress corresponding to the decreasing point of acoustic velocity increase gradually. The influence of damage development on ultrasonic velocity lags behind that on the AE events.
引文
[1]NARA Y,KATO H,YONEDA T,et al.Determination of three-dimensional microcrack distribution and principal axes for granite using a polyhedral specimen[J].International Journal of Rock Mechanics and Mining Sciences,2011,48(2):316–335.
    [2]BIRCH F.The velocity of compressional waves in rocks to 10kilobars,Part 1[J].Journal of Geophysical Research,1960,65(4):1 083–1 102.
    [3]KING M S.Elastic wave propagation in and permeability for rocks with multiple parallel fractures[J].International Journal of Rock Mechanics and Mining Sciences,2002,39(8):1 033–1 043.
    [4]KING M S,CHAUDHRY N A,SHAKEEL A.Experimental ultrasonic velocities and permeability for sandstones with aligned cracks[J].International Journal of Rock Mechanics and Mining Sciences,1995,32(2):155–163.
    [5]CHOW T M,MEGLIS I L,YOUNG R P.Progressive microcrack development in tests on Lac du Bonnet granite—II.Ultrasonic tomographic imaging[J].International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts,1995,32(8):751–761.
    [6]AUDREY O S,FORTIN J,GUEGUEN Y,et al.Cracks in glass under triaxial conditions[J].International Journal of Engineering Science,2011,49(1):105–121.
    [7]SAYERS C M.Stress-dependent elastic wave velocities in shales[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1995,32(3):263–267.
    [8]张国凯,李海波,夏祥,等.岩石波速与损伤演化规律研究[J].岩石力学与工程学报,2015,34(11):2 270–2 277.(ZHANG Guokai,LI Haibo,XIA Xiang,et al.Wave velocity and damage development of rock[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2 270–2 277.(in Chinese))
    [9]MANTHEI G.Characterization of acoustic emission sources in a rock salt specimen under triaxial compression[J].Bulletin of the Seismological Society of America,2005,95(5):1 674–1 700.
    [10]HAZZARD J F,YOUNG R P.Moment tensors and micromechanical models[J].Tectonophysics,2002,356(1):181–197.
    [11]HAZZARD J F,YOUNG R P.Dynamic modelling of induced seismicity[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1 365–1 376.
    [12]LOKAJí?EK T,GOEL R K,RUDAJEV V,et al.Assessment of velocity anisotropy in rocks[J].International Journal of Rock Mechanics and Mining Sciences,2013,57:142–152.
    [13]PETRU?áLEK M,VILHELM J,RUDAJEV V,et al.Determination of the anisotropy of elastic waves monitored by a sparse sensor network[J].International Journal of Rock Mechanics and Mining Sciences,2013,60:208–216.
    [14]李浩然,杨春和,刘玉刚,等.单轴荷载作用下盐岩声波与声发射特征试验研究[J].岩石力学与工程学报,2014,33(10):2 107–2 116.(LI Haoran,YANG Chunhe,LIU Yugang,et al.Experimental study of ultrasonic velocity and acoustic emission properties of salt rock under uniaxial compression load[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(10):2 107–2 116.(in Chinese))
    [15]MARTIN C D,CHANDLER N A.The progressive fracture of Lac du Bonnet granite[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1994,31(6):643–659.
    [16]EBERHARDT E,STEAD D,STIMPSON B,et al.Identifying crack initiation and propagation thresholds in brittle rock[J].Canadian Geotechnical Journal,1998,35(2):222–233.
    [17]BIENIAWSKI Z T.Mechanism of brittle fracture of rock,Parts II and III[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1967,4(4):395–430.
    [18]SCHMIDTKE R H,LAJTAI E Z.The long-term strength of Lac du Bonnet granite[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1985,22(6):461–465.
    [19]MARTIN C D.Seventeenth Canadian Geotechnical Colloquium:The effect of cohesion loss and stress path on brittle rock strength[J].Canadian Geotechnical Journal,1997,34(5):698–725.
    [20]DIEDERICHS M S,KAISER P K,EBERHARDT E.Damage initiation and propagation in hard rock during tunneling and influence of near-face stress rotation[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(5):785–812.
    [21]张国凯,李海波,夏祥,等.岩石细观结构及参数对宏观力学特性及破坏演化的影响[J].岩石力学与工程学报,2016,35(7):1 341–1 352.(ZHANG Guokai,LI Haibo,XIA Xiang,et al.Effects of microstructure and micro parameters on macro mechanical properties and failure of rock[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(7):1 341–1 352.(in Chinese))
    [22]HUDSON J A,BROWN E T,FAIRHURST C.Shape of the complete stress-strain curve for rock[C]//Proceedings of the 13th U.S.Symposium on Rock Mechanics.Urbana:[s.n.],1972:773–795.
    [23]MARTIN C D.The strength of massive Lac du Bonnet granite around underground openings[Ph.D.Thesis][D].Winnipeg,Canada:University of Manitoba,1993.
    [24]TANG C A,XU X H.Evolution and propagation of material defects and Kaiser effect function[J].Journal of Seismological Research,1990,13(2):203–213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700